Luận án Mô hình đặc tính kênh truyền cho thông tin thủy âm vùng nước nông

Underwater acoustic (UWA) communication systems have been developed for the past three decades [25]. They can be used in potential applications such as environmental monitoring, offshore oil exploration, and

military missions. Nevertheless, UWA communications have a plethora

of difficulties, so they display many challenges for further developments.

The reason can be explained by a large demand on high frequency utilization as well as high data rate access under very complexity shallow

underwater environments. All these requirements, without doubt, call

for intensive research efforts on how to cope with problems faced by

current UWA communications, e.g., limited availability of acoustic frequency spectrum, complex time variations in UWA fading channels, and

urgent needs for good quality of service. Therefore, this dissertation is

devoted to investigate UWA communication systems by considering all

these challenges. In particular, two goals are aimed at, which are known

as: i) UWA channel modeling and ii) performance analysis of UWA

communication systems

pdf 128 trang dienloan 5760
Bạn đang xem 20 trang mẫu của tài liệu "Luận án Mô hình đặc tính kênh truyền cho thông tin thủy âm vùng nước nông", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Luận án Mô hình đặc tính kênh truyền cho thông tin thủy âm vùng nước nông

Luận án Mô hình đặc tính kênh truyền cho thông tin thủy âm vùng nước nông
MINISTRY OF EDUCATION AND TRAINING
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
DO VIET HA
MÔ HÌNH ĐẶC TÍNH KÊNH TRUYỀN
CHO THÔNG TIN THỦY ÂM VÙNG NƯỚC NÔNG
CHANNEL MODELING FOR SHALLOW
UNDERWATER ACOUSTIC COMMUNICATIONS
DOCTORAL THESIS OF TELECOMMUNICATIONS ENGINEERING
HA NOI - 2017
MINISTRY OF EDUCATION AND TRAINING
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
DO VIET HA
MÔ HÌNH ĐẶC TÍNH KÊNH TRUYỀN
CHO THÔNG TIN THỦY ÂM VÙNG NƯỚC NÔNG
CHANNEL MODELING FOR SHALLOW
UNDERWATER ACOUSTIC COMMUNICATIONS
Specialization: Telecommunications Engineering
Code No: 62520208
DOCTORAL THESIS OF TELECOMMUNICATIONS ENGINEERING
SUPERVISORS:
1. Assoc.Prof. Van Duc Nguyen
2. Dr. Van Tien Pham
Hanoi - 2017
DECLARATION OF AUTHORSHIP
I hereby declare that this dissertation titled, "Channel Modeling for Shal- 
low Underwater Acoustic Communications”, and the work presented in
it are entirely my own original work under the guidance of my supervi- 
sors. I confirm that:
• This work was done wholly or mainly while in candidature for a PhD
research degree at Hanoi University of Science and Technology.
• Where any part of this dissertation has previously been submitted
for a degree of any other qualification at Hanoi University of Science
and Technology or any other institution, this has been clearly stated.
• Where I have consult the published work or others, this is always
given. With the exception of such quotations, this dissertation is
entirely my own work.
• I have acknowledged all main source of help.
• Where the thesis is based on work done by myself jointly with oth-
ers, I have made exactly what was done by others and what I have
contributed myself.
SUPERVISORS
Hanoi, August 27, 2017 
PhD STUDENT
1. Assoc.Prof. Van Duc Nguyen
Do Viet Ha2. Dr. Van Tien Pham
ACKNOWLEDGEMENTS
First and foremost, I would like to thank my advisor Associate Prof.
Dr. Nguyen Van Duc for for providing an excellent atmosphere for doing
research, for his valuable comments, constant support and motivation.
His guidance helped me in all the time of research and writing of this
dissertation. I could not have imagined having a better advisor and
mentor for my PhD.
I would also like to thank Dr. Pham Van Tien for their advice and
feedback, also for many educational and inspiring discussions.
My sincere gratitude goes to the members in the Wireless Communica-
tion Lab, School of Electronics and Telecommunications, Hanoi Univer-
sity of Science and Technology, Hanoi, Vietnam. Without their support
and friendship it would have been difficult to complete my PhD studies.
I am also thankful to Dr. Nguyen Tien Hoa for his invaluable instruc-
tions in presenting my dissertation.
I would also like to express my deepest gratitude to my parents, my
husband, my son, and my daughter. They were always supporting me
and encouraging me with their best wishes, they were standing by me
throughout my life.
Hanoi, August 27, 2017
PhD STUDENT
Do Viet Ha
Contents
TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 1. DESIGN OF SHALLOW UWA CHANNEL SIMU-
LATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2. Overview of Simulation Models for UWA Channels . . . . . . . . 19
1.2.1. Rayleigh and Rice channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.2. Deterministic SOS Channel Models . . . . . . . . . . . . . . . . . . . . . 20
1.2.3. Deterministic SOC Channel Models. . . . . . . . . . . . . . . . . . . . . 21
1.3. The Geometry-based UWA Channel Simulator . . . . . . . . . . . . . 21
1.3.1. Developing the Reference Model from the Geometrical Channel
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.2. The Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.3. The Estimated Parameters of the Simulation Model . . . . 27
1.3.4. Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4. The Measurement-based UWA Channel Simulator . . . . . . . . . . 28
1.4.1. The Reference Model from the Measurement Data . . . . . . 29
1.4.2. The Simulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.3. Estimated Channel Parameters of the Simulation Model 33
1.4.4. Comparison of the Two Channel Simulators . . . . . . . . . . . . 34
1.5. The Proposed Approach for the Static UWA Channel . . . . . . 35
1.5.1. Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5.2. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
i
ii
1.6. The Proposed Approach for the Case of Doppler Effects . . . . 39
1.6.1. The Measurement Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.6.2. The Conventional Measurement-based Simulators . . . . . . . 41
1.6.3. The Proposed Channel Simulator . . . . . . . . . . . . . . . . . . . . . . . 45
1.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Chapter 2. MODELING OF DOPPLER POWER SPECTRUM
FOR SHALLOW UWA CHANNELS . . . . . . . . . . . . . . . . . . . . 53
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.2. The Proposed Doppler Spectrum Model . . . . . . . . . . . . . . . . . . . . 56
2.2.1. The Doppler Effects in Shallow UWA Channels . . . . . . . . . 56
2.2.2. The Proposed Doppler Model for UWA Channels . . . . . . . 59
2.3. The Description of Doppler Spectrum Measurements . . . . . . . 63
2.3.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.2. Measurement Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3.3. Reference Model from the Measurement Data. . . . . . . . . . . 66
2.4. Parameter Optimizations of the Proposed Model . . . . . . . . . . . 67
2.5. Measurement and Doppler Modeling Results . . . . . . . . . . . . . . . 68
2.5.1. Scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5.2. Scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.5.3. Scenario 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Chapter 3. UWA-OFDM SYSTEM PERFORMANCE ANAL- 
YSIS USING THE MEASUREMENT-BASED UWA CHAN-
NEL MODEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 78
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2. ICI Analysis of UWA-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . 81
3.2.1. SIR Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.2.2. Ambient Noise Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.2.3. SINR Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3. Capacity Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
iii
3.4. Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.1. The SIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.4.2. The SINR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4.3. Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.4. Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.5. Chapter Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
LIST OF PUBLICATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
ABBREVIATIONS
ACF Autocorrelation Function
AOA Angles of Arrival
AOD Angles of Departure
AWGN Additive White Gaussian Noise
BPSK Binary Phase Shift Keying
CIR Channel Impulse Response
FCF Frequency Correlation Function
ICI Inter-Channel Interference
INLSA Iterative Nonlinear Least Square Approximation
ISI Inter-Symbol Interference
LNA Low Noise Amplifier
LOS Line of Sight
LPNM Lp-Norm Method
MESS Method of Equally Spaced Scatterers
MSE Mean Square Error
OFDM Orthogonal Frequency Division Multiplexing
PDF Probability Density Function
PDP Power Delay Profile
PN Pseudo-Noise
PSD Power Spectra Density
Rx Receiver
SINR Signal to Interference plus Noise Ratio
SIR Signal-to-Interference Ratio
SNR Signal to Noise Ratio
SOC Sum-of-Cisoids
SOS Sum-of-Sinusoids
TCF Time Correlation Function
iv
vT-FCF Time-Frequency Correlation Function
TVCIR Time Variant Channel Impulse Response
TVCTF Time-Variant Channel Transfer Function
Tx Transmitter
UWA Underwater Acoustic
WLAN Wireless Local Area Network
WSSUS Wide-Sense Stationary Uncorrelated Scattering
List of Figures
1 Multipath interference in UWA communication systems. . . . . . . . . . . 4
1.1 The methodology behind the geometry-based channel modelling [17, 55]. . 17
1.2 The methodology behind the measurement-based channel modelling [31, 56]. 18
1.3 The scheme of designing the geometry-based channel simulator [17, 55]. . . 22
1.4 The geometrical model for shallow UWA channels with randomly dis-
tributed scatterers Si,n (•) on the surface (i = 1) and the bottom (i = 2)
[55]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5 The comparison between the normalized FCF of the reference model and
that obtained by the geometry-based simulator. . . . . . . . . . . . . . . . 29
1.6 Illustration of the measurement setup in Halong bay. . . . . . . . . . . . . 30
1.7 The measured |hˆ(τ, t)|2 for the transmission distance of 150 m. . . . . . . 31
1.8 The measured and normalized PDP ρ(τ) obtained for the transmission
distance of 150 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.9 The comparison of the normalized FCF obtained by the two simulators
to that of the reference model. . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.10 The flowchart of proposed approach to design the static UWA channel
simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.11 The comparison between the normalized FCF of the reference model and
that obtained by the measurement-based, the geometry-based, and the
proposed simulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.12 The normalized Doppler power spectrum. . . . . . . . . . . . . . . . . . . . 41
1.13 a) The reference T-FCF derived from the measurement results. b) The
T-FCF of the channel simulation model designed by the conventional
simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.14 The comparison between the normalized T-FCF of the reference model
and that obtained by the conventional measurement-based simulator. . . . 44
1.15 The flowchart of the proposed approach for the case of moving Rx. . . . . 46
vi
vii
1.16 a) The reference T-FCF derived from the measurement results. b) The
T-FCF of the channel simulation model designed by the proposed simulator. 48
1.17 The comparison between the normalized T-FCF of the reference model
and that obtained by the proposed simulator. . . . . . . . . . . . . . . . . 49
1.18 a) The error of the simulation T-FCF designed by the conventional
measurement-based simulator. b)The error of the simulation T-FCF
designed by the proposed simulator. . . . . . . . . . . . . . . . . . . . . . . 51
2.1 The 3-D geometry model for shallow environments with randomly dis-
tributed scatterers Si,n (•) on the surface (i = 1) and the bottom (i = 2). . 57
2.2 The Spike-shape Doppler spectrum. . . . . . . . . . . . . . . . . . . . . . . 61
2.3 Effect of the two Doppler components on the overall Doppler spectrum. . . 62
2.4 Illustration of the measurement setup in Halong bay. . . . . . . . . . . . . 64
2.5 The Doppler measurement scenario 1. . . . . . . . . . . . . . . . . . . . . . 64
2.6 The Doppler measurement scenario 2. . . . . . . . . . . . . . . . . . . . . . 65
2.7 The Doppler measurement scenario 3. . . . . . . . . . . . . . . . . . . . . . 65
2.8 The steps of parameter computations. . . . . . . . . . . . . . . . . . . . . . 68
2.9 The reference model S˜n (f) compared with the proposed Doppler model
S (f) for four observed cases in scenario 1. . . . . . . . . . . . . . . . . . . 73
2.10 The reference model S˜n (f) compared with the proposed Doppler model
S (f) for six typical cases in scenario 2. . . . . . . . . . . . . . . . . . . . . 74
2.11 The reference model S˜n (f) compared with the proposed Doppler model
S (f) for six cases in scenario 3. . . . . . . . . . . . . . . . . . . . . . . . . 76
2.12 The estimated trajectory movement of the Rx for scenario 3. . . . . . . . . 77
3.1 Average SIR versus signal bandwidth for different numbers of sub-carriers.. 88
3.2 Average SINR versus signal bandwidth for different numbers of sub-carriers. 89
3.3 Capacity of UWA-OFDM system versus signal bandwidth for different
numbers of sub-carriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4 Average spectra efficiency versus signal bandwidth for the number of
sub-carriers N = 256, and SNR = 20 dB at the receiver. . . . . . . . . . . . 92
3.5 Required transmit power PT versus signal bandwidth to achieve an SNR
of 20 dB at the receiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.6 Average spectra efficiency versus SNR at the receiver for the number of
sub-carriers N = 256, and signal bandwidth B = 10 kHz. . . . . . . . . . . 94
viii
3.7 Average SIR, SINR versus SNR at the receiver for the number of sub-
carriers N = 256, and signal bandwidth B = 10 kHz. . . . . . . . . . . . . . 94
3.8 Average spectra efficiency versus SNR at t ... c communications. In 2012 IEEE International Con-
ference on Communications (ICC), pp. 3811–3815. IEEE.
[28] Deane, G. B., J. C. Preisig, and A. C. Lavery (2013). The suspension of large
bubbles near the sea surface by turbulence and their role in absorbing forward-
scattered sound. IEEE Journal of Oceanic Engineering 38 (4), 632–641.
[29] Dol, H., M. Colin, M. Ainslie, P. van Walree, and J. Janmaat (2013). Simulation
of an underwater acoustic communication channel characterized by wind-generated
surface waves and bubbles. Oceanic Engineering, IEEE Journal of 38 (4), 642–654.
[30] Esmaiel, H. and D. Jiang (2013). Review article: Multicarrier communication
for underwater acoustic channel. Int. J. Communications, Network and System Sci-
ences 6, 361–376.
109
[31] Fayziyev, A., M. Paetzold, E. Masson, Y. Cocheril, and M. Berbineau (2014).
A measurement-based channel model for vehicular communications in tunnels. In
Wireless Communications and Networking Conference (WCNC), 2014 IEEE, pp.
116–121. IEEE.
[32] Flatte, S. M. (1983). Wave propagation through random media: Contributions
from ocean acoustics. Proceedings of the IEEE 71 (11), 1267–1294.
[33] Fleury, B. H., M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen
(1999). Channel parameter estimation in mobile radio environments using the SAGE
algorithm. IEEE Journal on Selected Areas in Communications 17 (3), 434–450.
[34] Fuhl, J., J.-P. Rossi, and E. Bonek (1997). High-resolution 3-D direction-of-arrival
determination for urban mobile radio. IEEE Transactions on Antennas and Propa-
gation 45 (4), 672–682.
[35] Hamdi, K. A. (2010). Exact SINR analysis of wireless OFDM in the presence of
carrier frequency offset. IEEE Transactions on Wireless Communications 9 (3).
[36] Hashemi, H. (1993). The indoor radio propagation channel. Proceedings of the
IEEE 81 (7), 943–968.
[37] Heitsenrether, R. M., M. Badiey, M. B. Porter, M. Siderius, and W. A. Kuperman
(2004). Modeling acoustic signal fluctuations induced by sea surface roughness. In
AIP Conference Proceedings, Volume 728, pp. 214–221. AIP.
[38] Hogstad, B. O., C. A. Gutie´rrez, M. Pa¨tzold, and P. M. Crespo (2013). Classes
of sum-of-cisoids processes and their statistics for the modeling and simulation of
mobile fading channels. EURASIP Journal on Wireless Communications and Net-
working 2013 (1), 1–15.
[39] Ijaz, S., A. J. Silva, O. C. Rodr´ıguez, and S. M. Jesus (2011). Doppler domain
decomposition of the underwater acoustic channel response. In OCEANS, 2011
IEEE-Spain, pp. 1–7. IEEE.
[40] Iskander, C.-D. and P. T. Mathiopoulos (2005). Analytical envelope correlation
and spectrum of maximal-ratio combined fading signals. IEEE transactions on ve-
hicular technology 54 (1), 399–404.
[41] Jornet, J. M. and M. Stojanovic (Sep. 2008.). Distributed power control for un-
derwater acoustic networks. in Proc. OCEANS 2008, Quebec City, Canada.
110
[42] Kim, B. C. and I. Lu (Sep. 2000). Parameter study of OFDM underwater com-
munications system. in Proc. IEEE OCEANS 2000, vol. 2, Providence, RI, USA,
pp. 1251–1255 .
[43] Kunisch, J. and J. Pamp (2008). Wideband car-to-car radio channel measurements
and model at 5.9 ghz. In Vehicular Technology Conference, 2008. VTC 2008-Fall.
IEEE 68th, pp. 1–5. IEEE.
[44] Lasota, H. and I. Kochan´ska (2011). Transmission parameters of underwater com-
munication channels. Hydroacoustics 14, 119–126.
[45] Lee, P., J. Barter, K. Beach, E. Caponi, C. Hindman, B. Lake, H. Rungaldier, and
J. Shelton (1995). Power spectral lineshapes of microwave radiation backscattered
from sea surfaces at small grazing angles. In IEE Proceedings-Radar, Sonar and
Navigation, Volume 142, pp. 252–258. IET.
[46] Li, J. and M. Kavehrad (Dec. 1999.). Effects of time selective multipath fading on
OFDM systems for broadband mobile applications. IEEE Communications Letters,
vol. 3, no.12, pp. 332–334 .
[47] Li, Y. and L. J. Cimini (2001). Bounds on the interchannel interference of OFDM
in time-varying impairments. IEEE Transactions on Communications, vol. 49, no.
3, pp. 401–404 .
[48] Liu, C., Y. V. Zakharov, and T. Chen (2012). Doubly selective underwater acous-
tic channel model for a moving transmitter/receiver. Vehicular Technology, IEEE
Transactions on 61 (3), 938–950.
[49] Lucani, D. E., M. Stojanovic, and M. Me´dard (2008). On the relationship between
transmission power and capacity of an underwater acoustic communication channel.
In OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, pp. 1–6. IEEE.
[50] Luong, N. S., M. Pa¨tzold, et al. (2017). A method to estimate the path gains and
propagation delays of underwater acoustic channels using the arrival phase informa-
tion of the multipath components. AEU-International Journal of Electronics and
Communications .
[51] Maurer, J., T. Fugen, and W. Wiesbeck (2002). Narrow-band measurement and
analysis of the inter-vehicle transmission channel at 5.2 ghz. In Vehicular Technology
Conference, 2002. VTC Spring 2002. IEEE 55th, Volume 3, pp. 1274–1278. IEEE.
111
[52] McDonald, J. and P. Schultheiss (1975). Asymptotic frequency spread in surface-
scatter channels at large Rayleigh numbers. The Journal of the Acoustical Society
of America 57 (1), 160–164.
[53] Models, T. C. IEEE std. 802.11–03/940r4, May, 2004.
[54] Molisch, A. F., F. Tufvesson, J. Karedal, and C. F. Mecklenbrauker (2009).
A survey on vehicle-to-vehicle propagation channels. IEEE Wireless Communica-
tions 16 (6), 12–22.
[55] Naderi, M., M. Paetzold, and A. G. Zajic (2014). A geometry-based channel model
for shallow underwater acoustic channels under rough surface and scattering condi-
tions. in Proc. 5th International Conference on Communication and Electronics,
ICCE 2014. Da Nang City, Vietnam, 112–117.
[56] Naderi, M., M. Paetzold, and A. G. Zajic (2015). The design of measurement-based
underwater acoustic channel simulators using the INLSA algorithm. In OCEANS
2015-Genova, pp. 1–6. IEEE.
[57] Nouri, H., M. Uysal, E. Panayirci, and H. Senol (2014). Information theoretical
performance limits of single-carrier underwater acoustic systems. IET Communica-
tions 8 (15), 2599–2610.
[58] Otnes, R., P. A. van Walree, and T. Jenserud (2013). Validation of replay-based
underwater acoustic communication channel simulation. IEEE Journal of Oceanic
Engineering 38 (4), 689–700.
[59] Paetzold, M., U. Killat, F. Laue, and Y. Li (1998). On the statistical properties
of deterministic simulation models for mobile fading channels. IEEE Transactions
on Vehicular Technology 47 (1), 254–269.
[60] Papoulis, A. and S. U. Pillai (2002). Probability, random variables, and stochastic
processes. Tata McGraw-Hill Education.
[61] Parkins, B. (1971). Reflection and scattering from a time-varying rough surface–
the nearly complete Lloyd’s mirror effect. The Journal of the Acoustical Society of
America 49 (5B), 1484–1490.
[62] Pa¨tzold, M. (2011). Mobile radio channels. John Wiley & Sons.
112
[63] Pa¨tzold, M., U. Killat, F. Laue, and Y. Li (1996). A new and optimal method
for the derivation of deterministic simulation models for mobile radio channels. In
Vehicular Technology Conference, 1996. Mobile Technology for the Human Race.,
IEEE 46th, Volume 3, pp. 1423–1427. IEEE.
[64] Pa¨tzold, M., U. Killat, F. Laue, and Y. Li (1998). On the statistical properties of
deterministic simulation models for mobile fading channels. IEEE Transactions on
Vehicular Technology, 47 (1), 254–269.
[65] Patzold, M. and V. Nguyen (2004). A spatial simulation model for shadow fading
processes in mobile radio channels. In Personal, Indoor and Mobile Radio Commu-
nications, 2004. PIMRC 2004. 15th IEEE International Symposium on, Volume 3,
pp. 1832–1838. IEEE.
[66] Pa¨tzold, M. and N. Youssef (2015). Spectrogram analysis of multipath fading
channels. In Personal, Indoor, and Mobile Radio Communications (PIMRC), 2015
IEEE 26th Annual International Symposium on, pp. 2214–2219. IEEE.
[67] Pham, V.-H., M. H. Taieb, J.-Y. Chouinard, S. Roy, and H.-T. Huynh (2011). On
the double Doppler effect generated by scatterer motion. REV-JEC (ISSN: 1859-
378X) 1 (1).
[68] Polprasert, C., J. Ritcey, M. Stojanovic, et al. (2011). Capacity of OFDM sys-
tems over fading underwater acoustic channels. Oceanic Engineering, IEEE Journal
of 36 (4), 514–524.
[69] Porter, M. et al. Bellhop code.[online] available:.  hlsresearch. com.
Rays/index. html .
[70] Preisig, J. (2007). Acoustic propagation considerations for underwater acoustic
communications network development. ACM SIGMOBILE Mobile Computing and
Communications Review 11 (4), 2–10.
[71] Price, R. (1955). A note on the envelope and phase-modulated components of
narrow-band gaussian noise. IRE Transactions on Information Theory 1 (2), 9–13.
[72] Proakis, J. and M. Salehi (2008). Digital Communications. McGraw-Hill Interna-
tional Edition. McGraw-Hill.
113
[73] Qarabaqi, P. and M. Stojanovic (2009). Statistical modeling of a shallow wa-
ter acoustic communication channel. In Proc. Underwater Acoustic Measurements
Conference, Nafplion, Greece, pp. 1341–1350. Citeseer.
[74] Qarabaqi, P. and M. Stojanovic (2011). Modeling the large scale transmission loss
in underwater acoustic channels. In 49th Annual Allerton Conference on Communi-
cation, Control, and Computing (Allerton), 2011, pp. 445–452. IEEE.
[75] Qarabaqi, P. and M. Stojanovic (2013). Statistical characterization and computa-
tionally efficient modeling of a class of underwater acoustic communication channels.
IEEE J. Ocean. Eng. 38 (4), 701–717.
[76] Radosevic, A., J. G. Proakis, and M. Stojanovic (2009). Statistical characterization
and capacity of shallow water acoustic channels. In OCEANS 2009-EUROPE, pp.
1–8. IEEE.
[77] Raynal, A. M. and A. W. Doerry (2010). Doppler characteristics of sea clutter.
New Mexico: Sandia National Laboratories .
[78] Rice, S. O. (1944). Mathematical analysis of random noise. Bell Labs Technical
Journal 23 (3), 282–332.
[79] Rice, S. O. (1945). Mathematical analysis of random noise. Bell System Technical
Journal 24 (1), 46–156.
[80] Sehgal, A., I. Tumar, and J. Schonwalder (2009). Variability of available capacity
due to the effects of depth and temperature in the underwater acoustic communica-
tion channel. In OCEANS 2009-EUROPE, pp. 1–6. IEEE.
[81] Sen, I. and D. W. Matolak (2008). Vehicle–vehicle channel models for the 5-ghz
band. IEEE Transactions on Intelligent Transportation Systems 9 (2), 235–245.
[82] Siderius, M. and M. B. Porter (2008). Modeling broadband ocean acoustic trans-
missions with time-varying sea surfaces. The Journal of the Acoustical Society of
America 124 (1), 137–150.
[83] Socheleau, F.-X., C. Laot, and J.-M. Passerieux (2011). Stochastic replay of non-
wssus underwater acoustic communication channels recorded at sea. IEEE Transac-
tions on Signal Processing 59 (10), 4838–4849.
114
[84] Socheleau, F.-X., C. Laot, and J.-M. Passerieux (2015). Parametric replay-based
simulation of underwater acoustic communication channels. IEEE Journal of Oceanic
Engineering 40 (4), 796–806.
[85] Socheleau, F.-X., J.-M. Passerieux, and C. Laot (2009). Characterisation of time-
varying underwater acoustic communication channel with application to channel
capacity. In Underwater Acoustic Measurements.
[86] Socheleau, F.-X., M. Stojanovic, C. Laot, and J.-M. Passerieux (2012).
Information-theoretic analysis of underwater acoustic OFDM systems in highly dis-
persive channels. Journal of Electrical and Computer Engineering, vol. 2012 .
[87] Stojanovic, M. (October 2007). On the relationship between capacity and dis-
tance in an underwater acoustic communication channel. ACM SIGMOBILE Mobile
Computing and Communications Review (MC2R), vol.11, no. 4, pp. 34–43 .
[88] Stojanovic, M. and J. Preisig (2009). Underwater acoustic communication chan-
nels: Propagation models and statistical characterization. IEEE Communications
Magazine 47 (1), 84–89.
[89] Tomasi, B., G. Zappa, K. McCoy, P. Casari, and M. Zorzi (2010). Experimental
study of the space-time properties of acoustic channels for underwater communica-
tions. In OCEANS 2010 IEEE-Sydney, pp. 1–9. IEEE.
[90] Tsimenidis, C., B. Sharif, O. Hinton, and A. Adams (2005). Analysis and modelling
of experimental doubly-spread shallow-water acoustic channels. In Oceans 2005-
Europe, Volume 2, pp. 854–858.
[91] Tuteur, F., H. Tung, and J. Zornig (1980). Asymmetric doppler amplitudes in the
surface scatter channel for crosswind transmitter–receiver geometry. The Journal of
the Acoustical Society of America 68 (4), 1184–1192.
[92] Urick, R. J. (1967). Principles of underwater sound for engineers. Tata McGraw-
Hill Education.
[93] Van Walree, P. (2011). Channel sounding for acoustic communications: techniques
and shallow-water examples. Norwegian Defence Research Establishment (FFI),
Tech. Rep. FFI-rapport 7.
115
[94] Van Walree, P., T. Jenserud, and R. Otnes (2010). Stretched-exponential doppler
spectra in underwater acoustic communication channels. The Journal of the Acous-
tical Society of America 128 (5), EL329–EL334.
[95] Van Walree, P., T. Jenserud, M. Smedsrud, et al. (2008). A discrete-time channel
simulator driven by measured scattering functions. IEEE Journal on Selected Areas
in Communications 26 (9), 1628–1637.
[96] Van Walree, P., R. Otnes, et al. (2013). Ultrawideband underwater acoustic com-
munication channels. IEEE Journal of Oceanic Engineering 38 (4), 678–688.
[97] Van Walree, P. A. (2013). Propagation and scattering effects in underwater acous-
tic communication channels. IEEE Journal of Oceanic Engineering 38 (4), 614–631.
[98] Walker, D. (2000). Experimentally motivated model for low grazing angle radar
doppler spectra of the sea surface. IEE Proceedings-Radar, Sonar and Naviga-
tion 147 (3), 114–120.
[99] Walker, D. (2001). Doppler modelling of radar sea clutter. IEE Proceedings-Radar,
Sonar and Navigation 148 (2), 73–80.
[100] Ward, K. D., S. Watts, and R. J. Tough (2006). Sea clutter: scattering, the K
distribution and radar performance, Volume 20. IET.
[101] Watts, S., L. Rosenberg, S. Bocquet, and M. Ritchie (2016). Doppler spectra of
medium grazing angle sea clutter; part 1: characterisation. Radar, Sonar Navigation,
IET 10 (1), 24–31.
[102] Yin, X. and X. Cheng (2016). Propagation channel characterization, parameter
estimation, and modeling for wireless communications. John Wiley & Sons.
[103] Zajic, A. G. (2010). Statistical modeling of underwater wireless channels. In
GLOBECOM, pp. 1–5.
[104] Zajic´, A. G. (2011). Statistical modeling of MIMO mobile-to-mobile underwater
channels. IEEE Transactions on Vehicular Technology 60 (4), 1337–1351.
[105] Zhang, J., J. Cross, and Y. R. Zheng (2010). Statistical channel modeling of
wireless shallow water acoustic communications from experiment data. In Military
Communications Conference, MILCOM 2010, pp. 2412–2416. IEEE.

File đính kèm:

  • pdfluan_an_mo_hinh_dac_tinh_kenh_truyen_cho_thong_tin_thuy_am_v.pdf
  • pdf2.Tom tat luan an_English.pdf
  • pdf2.Tom tat luan an_Vietnamese.pdf
  • pdf3. Ban trich yeu luan an.pdf
  • pdf4. INFORMATION ON NEW CONCLUSIONS OF DOCTORAL THESIS.pdf
  • pdf5. THÔNG TIN TÓM TẮT VỀ NHỮNG KẾT LUẬN MỚI CỦA LUẬN ÁN TIẾN SĨ (VIỆT).pdf