Luận án Research on establishing the neural stimulation system and apply for evaluating the spatial response of hippocampal place cells

Biomedical engineering is an applied science field, which connects

different sciences from physics, chemistry, and biology to electrical, control,

information, micro and nano technologies in order to provide biomedical

solutions for improving human health. Neural engineering is an important

subfield of biomedical engineering, which uses engineering techniques to treat,

replace, or restore the functions of the neural system. One of the central field

of neurophysiology is the study of the mechanisms of memory and information

storage in the brain [8], [48], [73], [87 - 89]. It requires a device possessed

controllable and stable properties for studying the mechanism of memory

storing in the brain. This plays an important role in a comprehensive

understanding of physiological neural system. Therefore, the development of

systems that allow studying the physiology of the nervous system has highly

practical applications.

pdf 132 trang dienloan 5580
Bạn đang xem 20 trang mẫu của tài liệu "Luận án Research on establishing the neural stimulation system and apply for evaluating the spatial response of hippocampal place cells", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Luận án Research on establishing the neural stimulation system and apply for evaluating the spatial response of hippocampal place cells

Luận án Research on establishing the neural stimulation system and apply for evaluating the spatial response of hippocampal place cells
ACADEMY OF MILITARY SCIENCE AND TECHNOLOGY 
TA QUOC GIAP 
RESEARCH ON ESTABLISHING 
THE NEURAL STIMULATION SYSTEM AND 
APPLY FOR EVALUATING THE SPATIAL RESPONSE 
OF HIPPOCAMPAL PLACE CELLS 
DOCTOR OF ENGINEERING DISSERTATION 
HANOI - 2020 
MINISTRY OF EDUCATION AND TRAINING MINISTRY OF NATIONAL DEFENCE 
ACADEMY OF MILITARY SCIENCE AND TECHNOLOGY 
TA QUOC GIAP 
RESEARCH ON ESTABLISHING 
THE NEURAL STIMULATION SYSTEM AND 
APPLY FOR EVALUATING THE SPATIAL RESPONSE 
OF HIPPOCAMPAL PLACE CELLS 
Specialization: Electronic engineering 
Code: 9 52 02 03 
DOCTOR OF ENGINEERING DISSERTATION 
SUPERVISORS: 
1. Dr. NGUYEN LE CHIEN 
2. Dr. LE KY BIEN 
HA NOI - 2020
MINISTRY OF EDUCATION AND TRAINING MINISTRY OF NATIONAL DEFENCE 
i 
DECLARATION 
I hereby declare that this dissertation is my original work. The data and 
results presented in the dissertation are honest and have not been published in 
any other work. References are fully cited. 
10th January, 2020 
giả luận án 
 TA Quoc Giap 
ii 
ACKNOWLEDGMENTS 
First and foremost, I would like to express my deep appreciation to my 
direct supervisors, Dr. NGUYEN Le Chien, Dr. LE Ky Bien and Association 
Professor TRAN Hai Anh, who enthusiastically guided me during my whole 
PhD time. Thank you very much for many meaningful advices and discussion 
for my work. I learnt from the mentors not only techniques for fulfilling my PhD 
work, but also methods for solving problems in a lab as well as in the life. Thank 
you very much for revising my thesis, giving me helpful comments and advices. 
My sincere appreciations must go to other teachers in the Departments for 
their encouragement, knowledge sharing, supports and helps in our course and 
conduct the thesis. 
I would like to express my sincere thanks to the Institute of Electronics – 
Academy of Military Science and Technology; Department of Physiology, 
Department of Material Equipment – VietNam Military Medical University, 
where I study, live and work for creating favorable conditions for me to 
participate in studying and researching during my time as a PhD student. 
I want to express my special thank to the leader of Academy of Military 
science and technology and other collaborator centers for their support and help 
for this work. 
Finally, I would like to thank my family members for their love, 
encouragement. And especially, I would thank my wife who have sacrificed a 
lot of things for supporting me to fulfill my PhD work.
iii 
TABLE OF CONTENTS 
Page 
LIST OF SYMBOL AND ABBREVIATION..v 
LIST OF FIGURES AND TABLESix 
INTRODUCTION ............................................................................................. 1 
CHAPTER 1 
OVERVIEW ABOUT ELECTRICAL ACTIVITY OF NEURONS ............... 6 
1.1. Membrane potential of neurons ................................................................. 6 
1.1.1. Structure of nerve cells membrane ..................................................... 6 
1.1.2. Resting and action potential ................................................................ 9 
1.2. Electrical nerve stimulation and medical significance ............................ 12 
1.3. The response of cell membranes to electrical stimulation ....................... 16 
1.4. The recording methods of the neuronal action potential ......................... 18 
1.5. Hippocampus and hippocampal place cells ............................................. 21 
1.5.1. Structural characteristics ................................................................... 21 
1.5.2. Function of the Hippocampus ........................................................... 21 
1.6. Fundamentals of electronic circuit model of neuron ............................... 23 
1.7. Related research to this dissertation ......................................................... 26 
1.8. Chapter conclusion ................................................................................... 29 
CHAPTER 2 
EQUIVALENT ELECTRICAL CIRCUIT MODEL ......................................... 
AND NEURONAL ELECTRICAL STIMULATION ALGORITHMS ........ 31 
2.1. Electronic model of neuron membrane and assessment of electric 
stimulation parameters .................................................................................... 32 
2.1.1. Electronic circuit model of neurons .................................................. 32 
2.1.2. Simulation of stimulating parameters on Maeda and Makino models .... 34 
2.1.3. Simulation results and discussion ..................................................... 36 
2.2. The system for stimulation and recording the electrical activity of neurons .. 39 
2.3. Building electrical stimulation algorithm model for neurons .................. 41 
iv 
2.3.1. Model and algorithm of electrical stimulation of neurons with NPT 
test ............................................................................................................... 41 
2.3.2. Model and algorithm of electrical stimulation of neurons with spatial 
response tests ............................................................................................... 47 
2.4. Chapter conclusion ................................................................................... 63 
CHAPTER 3 
EVALUATING THE STIMULATION ALGORITHMS AND .................... .... 
THE SYSTEM BY BEHAVIOURAL RESPONSES AND ............................... 
PRACTICAL EXERCISES ON MICE .......................................................... 64 
3.1. Materials and methods ............................................................................. 64 
3.2. Simulation results ..................................................................................... 67 
3.2.1. Simulation of the NPT task ............................................................... 68 
3.2.2. Response simulation in spatial exercises .......................................... 69 
3.3. Analyze and evaluate experimental results on mice ................................ 74 
3.3.1. Experimental results performed on NPT test .................................... 74 
3.3.2. Experimental results performed on the spatial response tests .......... 79 
3.4. The results of stimulating and recording experiments of the neuronal 
electronic activity in the hippocampus on mice80 
3.4.1. Unit isolation and recording..80 
3.4.2. Common characteristics of hippocampal place cells..82 
3.5. The evaluation of the algorithms, stimulation and recording systems for the 
electrical activity of neurons83 
3.5.1. The evaluation of algorithms..83 
3.5.2. The evaluation of stimulating and recording system for the electrical 
activity of neurons ....................................................................................... 86 
3.6. Chapter conclusion ................................................................................... 94 
REFERENCES .............................................................................................. 100 
APPENDICES  
v 
LIST OF SYMBOLS AND ABBREVIATIONS 
𝐶 Ions concentration 
𝐶𝑚 Capacitance of the membrane per unit plane 
cr The adjusted response number 
countInterVal Number of stops to adjust the parameter 
delayTime The minimum time from when the mouse receives the 
reward until the new reward area appears 
deltaTime The time it takes to count from the time the mouse receives 
the prize until the new reward area appears 
delta Limits the distance the mouse moves to get the reward 
𝑑𝐷𝑀𝑇 The distance the mouse moves over a certain period of time 
in the DMT test 
𝑑𝑅𝑅𝑃𝑆𝑇 The distance the mouse moves over a certain period of time 
in the RRPST test 
𝑑𝑃𝐿𝑇 The distance the mouse moves over a certain period of time 
in the PLT test 
𝑑𝑋 Diameter on the horizontal axis of the virtual environment 
𝑑𝑌 Diameter on the vertical axis of the virtual environment 
𝐸𝐴 Action potential of cell 
𝐸𝐾 Resting potential of cell 
�̅� Electric field strength 
𝐹 Faraday constant 
𝑔𝑁𝑎 Conductivity of Na
+ ion channels 
𝑔𝐾 Conductivity of K
+ ion channels 
𝑔𝐿 Conductivity of secondary ion channels 
Interval Interval to stop for parameter adjustment 
𝐼𝑖 Intra-axonal current 
vi 
𝐼𝑘𝑡 Cell membrane stimulated current 
𝐼𝑜 Extra-axonal current 
𝐼𝑠 Stimulation current per unit of time 
IN
K Intracellular K+ concentration 
OUT
K Extracellular K+ concentration 
maxT The maximum time of task 
maxPt The maximum number of rewards 
maxwidth Radius of mice area moving 
M50 50 percent of the optimal 
M70 70 percent of the optimal 
M80 80 percent of the optimal 
n Valence of ions 
OUT
Na Extracellular Na+ concentration 
IN
Na Intracellular Na+ concentration 
𝑅 Constant 
𝑅𝑚 Membrane resistance per unit area 
𝑇 Absolute temperature 
𝑡 Time to stimulate 
𝑡1 Rewarding eligible time 
𝑡2 Reward receiving time 
𝑡𝐿𝑇 Total amount of exercise time for the mouse 
𝑡𝑆 Training time (also the total time of sessions) 
𝑡𝐼𝑛 Rest time to adjust the value of the stimulating parameter 
𝑉𝑚 Membrane potential 
Pt Number of rewards. 
𝑉𝑚 – 𝑉𝑁𝑎 Transmembrane potential of Na
+ channel 
vii 
𝑉𝑚 – 𝑉𝐾 Transmembrane potential of K
+ channel 
𝑉𝑚 – 𝑉𝐿 Transmembrane potential of secondary channels 
𝑉′ Electric membrane charge 
𝑣𝑚̅̅ ̅̅ The mean of movement speed of the mouse in the open 
environment 
𝑋𝑚𝑎𝑥 Maximum diameter in the horizontal axis of the virtual 
environment 
𝑋𝑚𝑖𝑛 Minimum diameter in the horizontal axis of the virtual 
environment 
x0, y0 Reward coordinates of mouse before t 
xs, ys The coordinates of the mice at the time t is assigned with x0, 
y0 which is the original position of the mice 
xt ,yt Reward coordinates of mouse at 𝑡 
xz1, yz1 The x and y coordinates of the center of the reward area 1 
xz2, yz2 The x and y coordinates of the center of the reward area 2 
xzt, yzt x, y coordinates of the center of the current reward area 
𝑌𝑚𝑎𝑥 Maximum diameter in the vertical axis of the virtual 
environment 
𝑌𝑚𝑖𝑛 Minimum diameter in the vertical axis of the virtual 
environment 
𝑧1 Reward region 1 
𝑧2 Reward region 2 
wz Radius of the reward area 
𝛥𝑡 System latency 
𝛥𝑡𝐷𝑀𝑇 System latency in DMT test 
𝛥𝑡𝑁𝑃𝑇 System latency in NPT test 
𝛥𝑡𝑅𝑅𝑃𝑆𝑇 System latency in RRPST test 
viii 
𝛥𝑡𝑃𝐿𝑇 System latency in PLT test 
𝜙𝑖 Inner membrane potential 
𝜙0 Outer membrane potential 
 Membrane time constant 
𝜃0 Response threshold 
𝜃cr Correction threshold 
AD Alzheimer’s disease 
BSR Brain stimulation reward 
CCD Charge coupled device 
DAC Digital analog converter 
DC Direct current 
DMT Distance movement task 
EBS Electrical brain stimulation 
EF Extracellular field 
FPS Frames per second 
HNM Hippocampal network model 
ICSS Intracranial self – stimulation 
MCI Mild cognitive impairment 
MFB Medial forebrain bundle 
MTLE Mesial temporal lobe epilepsy 
NPT Nose – poking task 
OF Open – field 
PLT Place learning task 
RND, RRPST Random task, random reward place search task 
SPF Spike potential field 
SNR Signal to noise ratio 
ix 
LIST OF FIGURES 
page 
Figure 1.1. Basic structure of nerve cell... 7 
Figure 1.2. Concentration and potential of ions at rest. 9 
Figure 1.3. Direction of potential field lines around a neuron.... 11 
Figure 1.4. Changes in membrane potential under the effect of stimulation 
pulses. 13 
Figure 1.5. Dopamine transmission pathways of mesolimbic 14 
and mesocortical systems 14 
Figure 1.6. Cell membrane’s response to stimulus signals 16 
Figure 1.7. Demonstration of extracellular potential recording technique and 
the data form............................................................................................. 19 
Figure 1.8. Diagram of rodent brain and the location of the hippocampus 21 
Figure 1.9. Experimental equipment for the formation of the axon cable 
equation 23 
Figure 1.10. Electronic circuit model and voltage chart of neurons24 
Figure 2.1. Electric model of neron and the theory of action potential32 
Figure 2.2. Electrical neuron model according to Maeda and Makino34 
Figure 2.3. Electric model of a neuron under the stimulation of direct 
current...35 
Figure 2.4. One-dimensional stimulation pulse form with specified 
parameter... 36 
Figure 2.5. The voltage response pattern of the model.. 37 
Figure 2.6. Voltage change by stimulating intensity at 80Hz 38 
Figure 2.7. Change in voltage by stimulation frequency, at the intensity of 
70μA.. 39 
Figure 2.8. Model of stimulating and recording the potential of neurons.. 40 
x 
Figure 2.9. The integrated control pulse pattern of the system and the neuron 
stimulation pulse... 41 
Figure 2.10. Model of system for stimulating and responding to nose-poke 
behavior 42 
Figure 2.11. Flow chart of the NPT test. 45 
Figure 2.13. Stimulating algorithm flowchart for DMT test.. 51 
Figure 2.14. The system for stimulation and recording the action potential of 
neurons on mice 53 
Figure 2.15. Algorithm flowchart for the RRPST test... 57 
Figure 2.16. Flowchart of electric stimulation algorithm for PLT test... 61 
Figure 3.2. The recording chamber for the ICSS response and.. 
nose-poking behaviors of mice66 
Figure 3.3. The illutration of the model and the arrangement of the spatial 
tasks... 66 
Figure 3.5. Program interface in DMT test. 70 
Figure 3.6. Program interface in RRPST test.. 71 
Figure 3.7. Program interface in PLT test... 72 
Figure 3.8. Relationship between nasal poking behavioral response and 
intensity of stimulation. 77 
Figure 3.9. The dependence of nose-poking response on the stimulating 
frequency....................... 78 
Figure 3.10. Experimental results are analyzed for the spatial response 
tests80 
Figure 3.11. The neuron activity are recorded and isolated using an offline-
sorter program (Plexon) 81 
Figure 3.12. Electrical activity of neurons recorded at hippocampus 82 
xi 
Figure 3.13. Model of evaluating the stability and latency of the system for NPT 
task by labchart Pro v8.1.8 86 
Figure 3.14. The illustration for pulses of the reward condition, reward 
delivery, and the delay time of the system 87 
Figure 3.15. The evaluation of the stability and delay of the system for the 
DMT, RRPST and PLT tasks 87 
Figure 3.16. Program to evaluate the stability and latency of DMT test 88 
Figure 3.17. Graph of system latency time in DMT test 89 
Figure 3.18. Program to evaluate systemic stability and latency in RRPST 
test. 90 
Figure 3.19. Graph of system latency time in RRPST test. 90 
Figure 3.20. Program to evaluate systemic stability and latency in PLT test. 91 
Figure 3.21. Graph of system latency time in PLT test.. 92 
1 
INTRODUCTION 
1. The necessity of the dissertation 
Biomedical engineering is an applied science field, which connects 
different sciences f ... r texture abnormalities and reduced hippocampal 
volume are distinguishing features of schizophrenia”. Psychiatry Res., 
223(3):179–186. 
79. Ranck Jb Jr (1973), “Studies on single neurons in dorsal hippocampal 
formation and septum in unrestrained rats. Part I: Behavioral correlates and 
firing repertoires”, Exp. Neurol., 41(2):461-531. 
80. Renshaw B, Forbes A, Morison BR (1940), “Activity of isocortex and 
hippocampus: electrical studies with micro-electrodes”, J. 
Neurophysiol.,3(1):74-105. 
109 
81. Rotenberg A, Abel T, Hawkins RD, Kandel ER, Muller RU (2000) “Parallel 
instabilities of long-term potentiation, placecells, and learning caused by 
decreased protein kinase A activity”, J. Neurosci., 20(21):8096–8102. 
82. Schröder J, Pantel J (2016), “Neuroimaging of hippocampal atrophy in 
early recognition of Alzheimer's disease – a critical appraisal after two 
decades of research”. Psychiatry Res. Neuroimaging, 247:71–78. 
83. Sidman M, Brady JV, Boren JJ, Conrad DG, Schulman A (2016), “Reward 
Schedules and Behavior Maintained by Intracranial Self-Stimulation”, 
Science, 122(3174):830-831. 
84. Speakman A, O'Keefe J (1990), “Hippocampal Complex Spike Cells do not 
Change Their Place Fields if the Goal is Moved Within a Cue Controlled 
Environment”. Eur. J. Neurosci., 2(6):544-555. 
85. Stalnaker TA, Liu TL, Takahashi YK, Schoenbaum G (2018), 
“Orbitofrontal neurons signal reward predictions, not reward prediction 
errors”, Neurobiol. Learn. Mem., 153(Pt B):137-143. 
86. Stringer KG, Martin GM, Skinner DM (2005), “The effects of hippocampal 
lesions on response, direction, and place learning in rats”, Behav. Neurosci., 
119(4):946-952. 
87. Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, et al. (2002), 
“Altered accumbens neural response to prediction of reward associated 
with place in dopamine D2 receptor knockout mice”, Proc. Natl. Acad. Sci. 
U S A, 99(13):8986-8991. 
88. Tran AH, Tamua R, Uwano T, Kobayashi T, Katsuki M, Ono T (2005), 
“Dopamin D1 receptor involved in locomotor activity and accumbens 
neural responses to prediction of reward associated with place”, Proc. Natl. 
Acad. Sci. U S A, 102(6):2117-2122. 
110 
89. Tran AH, Uwano T, Kimura T, Hori E, Katsuki M, et al. (2008), “Dopamine 
D1 receptor modulates hippocampal representation plasticity to spatial 
novelty”, J. Neurosci., 28(50):13390-13400. 
90. Whishaw IQ, McKenna JE, Maaswinkel H (1997), “Hippocampal lesions 
and path integration”, Curr. Opin. Neurobiol., 7(2):228-234. 
91. Wierner SI, Paul CA, Eichenbaum H (1989), “Spatial and behavioral 
correlates of hippocampal neuronal activity”, J. Neurosci., 9(8): 2737-2763. 
92. Wilkerson A, Levin ED (1999), “Ventral hippocampal dopamine D1 and D2 
systems and spatial working memory in rats”, Neuroscience, 89(3):743-749. 
93. Wilson MA, McNaughton BL (1993), “Dynamics of the hippocampal 
ensemble code for space”, Science, 261(5124):1055-1058. 
94. Wise RA (1996), “Addictive drugs and brain stimulation reward”, Annu. 
Rev. Neurosci., 19: 319-340. 
95. Wolbarsht ML, Macnichol EF Jr, Wagner HG (1960), “Glass Insulated 
Platinum Microelectrode”, Science, 132(3436):1309-1310. 
96. Yang X, Yao C, Tian T, Li X, Yan H, et al. (2018), “A novel mechanism 
of memory loss in Alzheimer’s disease mice via the degeneration of 
entorhinal–CA1 synapses”, Mol. Psychiatry, 23(2):199-210. 
97. Zinyuk L, Kubik S, Kaminsky Y, Fenton AA, Bures J (2000), 
“Understanding hippocampal activity by using purposeful behavior: place 
navigation induces place cell discharge in both task-relevant and task-
irrelevant spatial reference frames”, Proc. Natl. Acad. Sci. U S A, 
97(7):3771-3776. 
98. Zlebnik NE, Gildish I, Sesia T, Fitoussi A, Cole EA, et al. (2019), 
“Motivational Impairment is Accompanied by Corticoaccumbal 
Dysfunction in the BACHD-Tg5 Rat Model of Huntington’s Disease”, 
Cereb. Cortex, doi: 10.1093/cercor/bhz009. [Epub ahead of print]. 
111 
APPENDICES 
Table 1. The results of nose – poking response depend on intensity 
Intensity 
(µA) 
Mice’name 
20 30 40 50 60 70 80 90 100 110 120 130 140 
Day 1 
Ctr07 14 5 1 49 95 95 127 120 159 160 136 151 150 
Ctr14 14 4 84 94 144 120 107 158 125 113 77 113 34 
Ctr16 12 11 9 87 135 107 93 181 200 202 204 154 194 
Ctr21 4 10 7 48 66 66 107 135 115 127 162 174 39 
Ctr22 3 1 11 4 7 21 167 70 165 197 177 194 225 
Ctr25 6 23 52 72 100 70 119 161 61 58 19 24 75 
 Day 2 
Ctr07 20 7 11 5 22 95 129 89 143 128 118 128 173 
Ctr14 9 42 114 138 111 121 116 111 146 121 123 127 166 
Ctr16 5 11 2 105 143 162 201 177 196 204 173 178 164 
Ctr21 16 17 76 65 120 165 158 189 160 186 147 135 166 
Ctr22 4 2 2 87 110 118 195 185 215 186 176 190 164 
Ctr25 15 8 83 41 148 109 134 87 124 60 68 34 74 
X 10 12 38 66 100 104 138 139 151 145 132 134 135 
±SE 
2 3 11 11 13 11 10 12 12 14 15 15 17 
112 
Table 2. The results of nose – poking response depend on frequency 
Frequency 
(Hz) 
Mice’name 
16 20 25 32 40 50 63 80 100 126 158 
Day 1 
Ctr027 12 31 18 29 58 48 123 144 145 110 146 
Ctr029 15 5 5 25 10 29 233 165 184 191 253 
Ctr030 19 12 24 27 82 92 158 211 191 169 192 
Ctr032 19 6 5 12 16 74 168 161 145 155 143 
Ctr033 4 7 18 17 27 62 93 128 112 151 74 
Ctr034 12 32 20 19 23 117 147 204 195 214 179 
Ctr006 24 62 103 101 191 250 190 222 240 250 181 
Day 2 
Ctr027 16 17 10 34 52 53 99 132 144 133 95 
Ctr029 5 3 10 3 32 59 219 228 259 258 271 
Ctr030 3 9 24 20 62 77 159 152 189 154 130 
Ctr032 13 15 30 11 41 115 202 190 183 176 179 
Ctr033 7 8 6 13 73 115 108 146 138 135 81 
Ctr034 24 6 8 13 29 167 178 187 188 202 157 
Ctr006 22 31 106 111 215 262 245 212 226 235 185 
X 
13 13 28 29 72 121 173 178 185 185 127 
±SE 2 4 9 8 16 19 13 9 11 12 
15 
113 
Table 3. The results of system latency time in NPT test 
(unit: s) 
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 
Turn 10 
0.03 0.10 0.07 0.05 0.09 0.04 0.09 0.10 0.04 0.02 
0.07 0.05 0.05 0.04 0.02 0.11 0.09 0.03 0.04 0.01 
0.02 0.09 0.07 0.07 0.02 0.01 0.09 0.10 0.08 0.05 
0.05 0.09 0.02 0.05 0.08 0.01 0.02 0.07 0.03 0.15 
0.06 0.06 0.09 0.09 0.07 0.04 0.08 0.05 0.06 0.06 
0.08 0.07 0.05 0.10 0.08 0.09 0.04 0.09 0.05 0.02 
0.08 0.03 0.04 0.10 0.01 0.04 0.00 0.04 0.11 0.08 
0.10 0.02 0.04 0.04 0.09 0.04 0.01 0.10 0.07 0.09 
0.10 0.04 0.10 0.10 0.04 0.07 0.07 0.06 0.05 0.09 
0.01 0.02 0.11 0.10 0.01 0.05 0.08 0.10 0.06 0.04 
XNPT = 0,06 
SD = 0,03 tNPT.Max = 0,15 tNPT.Min = 0,01 
114 
Table 4. The results of system latency time in DMT test 
(unit: ms) 
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10 
3.72 3.91 4.23 7.55 1.63 7.67 5.86 7.69 6.80 5.87 
3.16 4.22 3.41 3.14 3.10 4.18 10.09 6.11 6.02 3.13 
6.06 5.22 6.15 5.16 2.08 5.18 5.21 8.07 6.13 4.71 
3.13 4.22 6.17 4.97 2.05 3.11 5.18 8.81 2.08 5.21 
2.09 3.09 4.17 4.23 5.12 6.12 4.16 6.14 5.21 5.11 
8.94 6.13 4.21 4.10 2.23 4.24 3.14 3.19 5.98 6.14 
5.18 3.09 3.06 3.13 4.23 3.15 5.10 5.22 7.52 3.01 
6.14 3.16 6.12 2.06 4.16 7.64 4.24 9.77 3.12 8.49 
5.81 3.14 10.47 4.30 2.84 5.52 3.20 5.16 0.71 5.18 
2.10 6.42 3.12 5.08 4.15 5.98 5.23 2.10 3.25 10.34 
6.12 2.06 5.63 3.16 3.17 7.78 6.12 3.18 7.21 2.72 
6.12 4.21 7.19 10.63 5.16 3.16 3.02 5.25 3.15 5.21 
3.13 4.82 6.71 2.06 4.23 5.86 3.19 6.06 6.05 4.18 
4.79 3.12 3.19 4.17 4.14 5.13 8.83 5.19 1.54 7.20 
3.18 3.17 6.20 3.13 3.18 4.79 3.09 5.16 5.23 4.22 
3.10 4.23 5.15 6.14 4.37 4.17 6.13 3.17 3.11 4.15 
4.23 5.15 4.93 3.12 10.07 10.10 5.65 3.17 5.97 3.20 
10.15 3.10 8.17 5.10 3.16 6.21 3.12 4.16 4.35 5.21 
5.13 6.14 5.14 5.18 1.94 3.12 3.16 3.11 3.19 4.16 
5.26 6.05 5.22 5.26 3.15 4.13 6.17 5.20 5.10 6.57 
6.15 5.19 6.01 5.41 5.22 2.05 5.13 4.22 4.17 4.17 
3.15 5.59 1.43 5.10 4.20 5.23 4.19 7.11 4.20 3.18 
6.10 2.06 2.97 4.15 2.09 5.16 4.12 2.81 2.07 5.31 
5.13 3.11 6.08 5.19 4.45 7.88 7.53 7.04 3.16 5.07 
4.20 2.40 3.11 3.08 4.18 3.16 7.21 3.17 4.14 4.20 
4.13 5.14 3.15 3.12 5.13 6.03 5.22 3.08 3.12 5.14 
5.13 5.22 6.21 3.15 3.16 3.15 8.67 3.09 5.22 5.18 
8.26 8.57 5.23 9.09 3.07 8.72 4.03 1.96 6.12 2.05 
5.23 6.10 4.17 6.25 3.01 6.14 3.23 6.12 4.12 3.09 
3.12 6.86 2.05 6.18 5.17 4.18 6.85 2.09 5.17 6.13 
4.19 3.09 4.10 3.09 4.18 6.14 3.07 4.23 1.89 3.11 
6.15 3.17 8.71 5.11 5.40 3.05 3.15 6.11 5.22 4.17 
5.21 9.74 3.10 5.25 5.16 8.95 4.16 4.18 6.13 2.07 
115 
3.11 5.19 6.13 3.00 5.16 10.80 8.80 10.62 10.84 5.13 
9.56 4.25 6.07 3.11 8.16 2.06 4.11 3.10 5.17 5.19 
4.16 6.13 5.18 4.20 6.12 5.21 6.14 5.20 3.00 3.16 
7.90 6.14 4.68 5.16 5.22 6.20 4.25 8.31 5.17 3.15 
4.17 2.89 5.38 2.08 6.14 2.98 4.26 4.18 4.16 5.19 
5.23 5.12 6.35 3.16 6.18 4.26 3.09 8.31 4.22 4.55 
3.09 10.81 4.10 4.14 8.13 6.13 8.84 10.61 4.17 7.19 
2.05 10.58 3.29 3.03 2.51 5.16 6.10 3.08 3.10 4.09 
3.12 9.87 3.15 4.05 5.85 4.18 2.06 3.12 2.00 3.05 
5.25 3.09 5.16 5.20 6.16 5.09 6.06 8.77 5.06 6.10 
8.82 6.12 2.03 4.23 11.64 7.84 5.27 6.16 4.24 3.08 
4.18 6.14 5.06 4.14 6.17 6.20 6.20 3.11 3.10 8.77 
5.12 10.88 5.11 3.07 2.95 8.46 3.09 4.23 11.12 5.91 
2.04 4.14 3.07 5.25 4.14 7.06 6.20 6.16 3.13 2.01 
3.08 4.10 4.03 3.04 5.14 1.46 6.15 2.04 3.09 4.16 
2.93 6.12 5.10 3.07 5.21 3.03 11.27 6.15 2.08 1.19 
3.29 6.21 4.97 4.83 6.21 4.05 6.16 4.06 6.10 3.08 
XDMT = 4,88 
SD = 2,01 tDMT.Max = 11,64 tDMT.Min = 0,71 
116 
Table 5. The results of system latency time in RRPST test 
(unit: ms) 
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10 
4.00 6.45 5.36 3.32 2.81 5.24 5.83 2.96 4.03 6.79 
3.12 5.45 2.09 3.21 1.13 6.12 5.17 9.72 4.09 4.20 
2.12 3.11 1.96 5.35 5.14 6.06 5.02 5.09 5.22 4.38 
2.11 2.52 3.14 3.18 3.09 2.05 5.17 3.04 4.09 3.23 
4.16 5.68 4.18 2.03 5.16 5.06 6.03 5.14 3.16 3.05 
4.13 3.04 5.01 6.13 8.52 5.17 6.18 4.24 9.37 3.18 
5.02 5.07 3.10 4.15 2.00 2.10 4.14 4.17 4.26 4.15 
3.15 4.22 5.13 4.13 5.13 5.07 6.11 6.14 7.63 0.77 
6.05 4.06 9.68 6.18 3.13 3.08 2.13 4.13 5.16 3.07 
5.18 6.13 5.05 3.08 6.15 3.06 4.17 4.13 2.01 4.23 
6.08 5.04 6.27 2.56 4.13 6.51 3.13 7.81 4.20 6.07 
6.25 5.07 9.27 4.08 5.21 6.06 5.07 4.17 6.12 6.11 
8.02 5.87 3.17 5.23 4.13 5.20 5.17 5.08 1.97 8.02 
2.00 4.24 3.04 3.09 4.22 4.06 5.04 6.19 6.15 2.12 
6.13 3.02 6.17 6.81 6.12 5.37 5.24 2.05 5.16 3.09 
5.83 6.16 4.14 5.14 2.08 4.10 3.11 4.18 4.22 4.18 
6.12 8.85 3.80 5.49 8.42 2.06 3.72 1.98 5.16 3.12 
6.05 4.18 4.19 5.34 4.17 4.13 4.26 0.00 6.14 3.04 
0.54 3.05 6.98 2.09 6.16 1.96 8.33 4.18 4.24 4.23 
3.19 6.79 0.00 3.32 6.09 3.90 5.30 0.00 4.12 5.06 
5.12 5.11 3.10 4.35 6.00 1.97 5.14 6.13 3.15 6.13 
6.11 4.15 5.12 3.13 4.13 2.10 3.15 3.13 6.29 4.03 
3.20 3.02 1.62 4.09 4.07 5.12 2.02 5.13 6.17 2.05 
5.16 3.13 5.23 4.17 7.00 2.06 2.10 6.15 4.09 6.04 
4.19 4.16 4.07 4.11 3.14 6.13 4.13 3.12 5.16 4.16 
8.44 3.19 4.16 6.13 5.14 3.20 3.20 4.13 4.26 4.16 
3.20 5.15 3.09 5.03 3.18 5.05 8.75 3.12 3.05 6.07 
2.07 2.11 4.11 6.17 4.13 3.12 2.11 0.00 3.16 3.18 
2.09 5.79 1.58 6.10 3.05 6.03 4.07 6.11 2.02 6.08 
4.13 3.17 4.16 3.22 3.14 6.18 4.15 3.12 4.17 4.35 
11.23 6.05 5.12 7.83 5.12 5.03 5.12 0.00 2.09 4.15 
2.07 4.23 4.24 4.19 3.19 2.06 5.58 4.25 4.14 3.02 
5.18 9.48 8.20 2.00 3.10 5.05 3.13 6.13 5.38 5.79 
117 
5.15 3.03 7.40 7.15 6.17 6.14 4.09 4.14 4.25 3.07 
8.86 4.26 6.03 3.54 6.11 6.09 3.14 6.18 3.14 3.11 
3.10 1.94 5.21 2.11 3.13 5.17 5.06 4.15 8.36 3.07 
5.13 6.17 6.02 1.97 4.09 3.13 5.20 3.37 2.05 4.10 
3.15 4.07 5.13 4.21 5.14 5.14 6.04 3.19 9.95 5.14 
4.18 6.13 3.02 5.08 5.39 2.98 2.28 2.28 7.19 3.44 
3.18 4.08 4.21 6.44 2.10 4.17 11.16 0.00 4.08 8.79 
4.16 5.17 5.12 5.11 5.20 5.13 5.21 5.27 6.25 3.11 
5.13 4.14 5.20 2.10 7.09 6.47 6.86 0.00 6.62 4.06 
6.17 5.20 3.07 5.16 3.09 4.18 3.43 2.05 8.87 5.11 
5.19 3.10 3.34 7.70 3.12 0.50 3.13 0.00 5.20 6.33 
2.07 5.21 6.14 5.12 5.08 4.23 5.06 0.00 5.07 4.16 
6.20 5.10 4.44 4.11 5.08 4.14 4.14 0.00 6.08 6.04 
4.18 3.10 3.18 3.05 5.87 6.12 2.11 0.00 5.34 3.16 
4.08 3.04 4.03 3.11 3.08 5.13 4.40 0.00 5.98 5.06 
5.22 3.09 3.17 3.04 4.06 7.21 5.20 5.16 5.17 5.34 
6.25 5.04 4.01 6.79 4.06 5.09 5.09 3.09 4.01 2.03 
XRRPST = 4,44 
SD = 1,81 
 tRRPST.Max = 11,23 tRRPST.Min = 0,00 
118 
Table 6. The results of system latency time in PLT test 
(unit: ms) 
Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10 
5.16 3.19 7.61 11.69 3.14 7.03 8.74 5.15 6.37 4.01 
8.24 10.35 6.36 9.83 4.13 6.87 3.09 5.13 9.63 4.41 
3.07 3.16 2.08 6.23 4.05 2.08 2.05 5.05 5.03 5.23 
5.15 3.13 4.15 6.17 4.13 1.99 7.97 5.22 2.08 1.99 
3.18 3.11 3.07 2.01 3.12 5.19 5.06 5.19 5.41 4.17 
5.04 5.05 4.15 7.19 5.07 3.11 3.13 6.76 7.03 3.08 
7.74 4.13 3.16 5.10 6.10 3.04 6.15 5.58 5.36 6.10 
3.23 6.07 3.05 3.15 5.10 6.15 5.09 5.22 6.23 2.08 
6.20 10.41 6.16 5.02 5.12 4.41 4.18 4.12 2.01 4.12 
4.12 3.11 5.16 7.77 6.17 5.14 2.10 3.16 4.47 2.09 
6.15 6.14 4.13 4.22 3.07 3.17 3.02 2.09 5.16 5.15 
5.08 5.22 4.23 3.11 3.13 4.12 4.64 3.05 4.13 6.11 
5.20 3.03 11.13 4.13 3.11 3.12 9.36 6.12 5.15 6.45 
10.22 5.22 5.06 6.18 3.11 4.16 4.10 5.13 5.19 4.23 
8.58 3.45 5.19 3.07 3.11 3.12 4.22 3.20 5.12 6.46 
4.17 4.13 5.54 4.24 4.05 9.27 4.15 4.17 3.50 4.17 
5.11 4.14 3.11 6.34 2.07 3.55 5.38 9.65 4.28 3.04 
3.15 3.12 4.23 3.15 6.14 1.97 2.11 5.08 3.19 5.15 
7.44 5.17 4.14 6.07 5.19 3.10 3.21 6.70 4.07 3.24 
6.04 6.13 6.07 5.15 8.75 6.12 6.03 4.17 2.12 5.10 
4.18 5.09 4.17 8.40 4.03 6.16 10.11 6.27 3.21 5.51 
7.75 6.15 6.12 7.12 9.65 3.11 4.12 4.22 5.13 5.09 
6.06 6.00 4.16 3.19 5.06 3.12 4.08 6.13 5.24 3.14 
3.15 6.29 6.16 3.96 5.17 3.12 5.13 3.06 2.18 3.14 
3.18 5.22 1.77 4.16 2.00 3.12 6.16 3.22 4.18 3.22 
4.05 4.14 4.14 3.05 2.17 3.12 3.18 4.10 3.03 3.21 
5.92 3.24 3.16 5.17 5.16 6.15 7.52 4.17 3.40 2.25 
6.05 6.12 7.00 3.05 5.07 4.15 4.67 1.99 4.93 5.21 
6.12 4.08 4.16 3.10 5.21 3.25 3.12 2.08 4.02 5.13 
3.19 5.20 2.10 5.06 9.73 5.21 5.07 2.02 3.15 3.07 
4.22 1.86 3.82 3.11 1.20 5.13 7.90 6.31 6.86 7.72 
1.98 3.04 5.20 6.10 4.15 3.13 10.35 5.19 4.21 3.61 
5.20 2.08 4.18 4.13 10.15 4.49 5.06 3.11 4.03 3.22 
119 
5.09 5.18 6.06 3.05 5.12 5.19 6.17 7.51 4.84 8.64 
2.49 6.10 5.15 3.12 6.04 4.24 5.21 6.06 2.29 6.15 
5.07 5.18 3.10 6.04 4.24 4.13 8.77 6.13 4.21 5.15 
2.08 4.19 5.24 3.12 6.06 4.15 5.08 7.59 4.08 24.28 
6.11 5.07 3.13 5.12 5.16 2.31 6.84 3.14 2.07 4.25 
5.08 6.17 10.62 3.19 8.70 5.96 10.81 3.05 2.11 3.09 
6.17 9.86 6.05 6.02 4.17 6.11 4.24 4.15 4.07 5.20 
5.22 6.92 3.22 5.20 5.07 3.00 5.22 2.09 4.16 5.20 
3.15 7.49 8.33 6.07 2.11 2.13 2.01 3.11 5.21 5.10 
11.07 8.63 6.53 5.17 6.04 6.60 4.15 2.05 6.08 4.14 
9.94 5.02 4.87 4.06 10.77 3.01 6.62 3.04 8.51 8.55 
4.09 5.17 5.22 4.16 2.02 3.38 5.09 4.16 8.20 1.99 
3.15 10.04 5.14 10.34 5.12 8.03 3.21 7.07 3.09 6.17 
6.12 5.12 6.12 6.15 6.05 4.07 2.08 5.15 6.37 5.21 
4.06 5.24 5.18 4.12 6.09 7.23 3.04 5.08 6.85 5.14 
5.21 5.17 3.14 7.60 4.03 4.14 2.11 6.24 5.12 3.04 
3.05 6.81 1.99 5.13 5.16 3.07 4.13 5.05 6.90 3.08 
XPLT = 4,91 
SD = 2,12 tPLT.Max = 24,28 tPLT.Min = 1,20 

File đính kèm:

  • pdfluan_an_research_on_establishing_the_neural_stimulation_syst.pdf
  • docThongTin KetLuanMoi LuanAn NCS TaQuocGiap.doc.doc
  • pdfTomTat LuanAn NCS TaQuocGiap_English.pdf
  • pdfTomTat LuanAn NCS TaQuocGiap_TiengViet.pdf
  • docTrichYeu LuanAn NCS TaQuocGiap.doc.doc