Luận án Research on establishing the neural stimulation system and apply for evaluating the spatial response of hippocampal place cells
Biomedical engineering is an applied science field, which connects
different sciences from physics, chemistry, and biology to electrical, control,
information, micro and nano technologies in order to provide biomedical
solutions for improving human health. Neural engineering is an important
subfield of biomedical engineering, which uses engineering techniques to treat,
replace, or restore the functions of the neural system. One of the central field
of neurophysiology is the study of the mechanisms of memory and information
storage in the brain [8], [48], [73], [87 - 89]. It requires a device possessed
controllable and stable properties for studying the mechanism of memory
storing in the brain. This plays an important role in a comprehensive
understanding of physiological neural system. Therefore, the development of
systems that allow studying the physiology of the nervous system has highly
practical applications.
Tóm tắt nội dung tài liệu: Luận án Research on establishing the neural stimulation system and apply for evaluating the spatial response of hippocampal place cells
ACADEMY OF MILITARY SCIENCE AND TECHNOLOGY TA QUOC GIAP RESEARCH ON ESTABLISHING THE NEURAL STIMULATION SYSTEM AND APPLY FOR EVALUATING THE SPATIAL RESPONSE OF HIPPOCAMPAL PLACE CELLS DOCTOR OF ENGINEERING DISSERTATION HANOI - 2020 MINISTRY OF EDUCATION AND TRAINING MINISTRY OF NATIONAL DEFENCE ACADEMY OF MILITARY SCIENCE AND TECHNOLOGY TA QUOC GIAP RESEARCH ON ESTABLISHING THE NEURAL STIMULATION SYSTEM AND APPLY FOR EVALUATING THE SPATIAL RESPONSE OF HIPPOCAMPAL PLACE CELLS Specialization: Electronic engineering Code: 9 52 02 03 DOCTOR OF ENGINEERING DISSERTATION SUPERVISORS: 1. Dr. NGUYEN LE CHIEN 2. Dr. LE KY BIEN HA NOI - 2020 MINISTRY OF EDUCATION AND TRAINING MINISTRY OF NATIONAL DEFENCE i DECLARATION I hereby declare that this dissertation is my original work. The data and results presented in the dissertation are honest and have not been published in any other work. References are fully cited. 10th January, 2020 giả luận án TA Quoc Giap ii ACKNOWLEDGMENTS First and foremost, I would like to express my deep appreciation to my direct supervisors, Dr. NGUYEN Le Chien, Dr. LE Ky Bien and Association Professor TRAN Hai Anh, who enthusiastically guided me during my whole PhD time. Thank you very much for many meaningful advices and discussion for my work. I learnt from the mentors not only techniques for fulfilling my PhD work, but also methods for solving problems in a lab as well as in the life. Thank you very much for revising my thesis, giving me helpful comments and advices. My sincere appreciations must go to other teachers in the Departments for their encouragement, knowledge sharing, supports and helps in our course and conduct the thesis. I would like to express my sincere thanks to the Institute of Electronics – Academy of Military Science and Technology; Department of Physiology, Department of Material Equipment – VietNam Military Medical University, where I study, live and work for creating favorable conditions for me to participate in studying and researching during my time as a PhD student. I want to express my special thank to the leader of Academy of Military science and technology and other collaborator centers for their support and help for this work. Finally, I would like to thank my family members for their love, encouragement. And especially, I would thank my wife who have sacrificed a lot of things for supporting me to fulfill my PhD work. iii TABLE OF CONTENTS Page LIST OF SYMBOL AND ABBREVIATION..v LIST OF FIGURES AND TABLESix INTRODUCTION ............................................................................................. 1 CHAPTER 1 OVERVIEW ABOUT ELECTRICAL ACTIVITY OF NEURONS ............... 6 1.1. Membrane potential of neurons ................................................................. 6 1.1.1. Structure of nerve cells membrane ..................................................... 6 1.1.2. Resting and action potential ................................................................ 9 1.2. Electrical nerve stimulation and medical significance ............................ 12 1.3. The response of cell membranes to electrical stimulation ....................... 16 1.4. The recording methods of the neuronal action potential ......................... 18 1.5. Hippocampus and hippocampal place cells ............................................. 21 1.5.1. Structural characteristics ................................................................... 21 1.5.2. Function of the Hippocampus ........................................................... 21 1.6. Fundamentals of electronic circuit model of neuron ............................... 23 1.7. Related research to this dissertation ......................................................... 26 1.8. Chapter conclusion ................................................................................... 29 CHAPTER 2 EQUIVALENT ELECTRICAL CIRCUIT MODEL ......................................... AND NEURONAL ELECTRICAL STIMULATION ALGORITHMS ........ 31 2.1. Electronic model of neuron membrane and assessment of electric stimulation parameters .................................................................................... 32 2.1.1. Electronic circuit model of neurons .................................................. 32 2.1.2. Simulation of stimulating parameters on Maeda and Makino models .... 34 2.1.3. Simulation results and discussion ..................................................... 36 2.2. The system for stimulation and recording the electrical activity of neurons .. 39 2.3. Building electrical stimulation algorithm model for neurons .................. 41 iv 2.3.1. Model and algorithm of electrical stimulation of neurons with NPT test ............................................................................................................... 41 2.3.2. Model and algorithm of electrical stimulation of neurons with spatial response tests ............................................................................................... 47 2.4. Chapter conclusion ................................................................................... 63 CHAPTER 3 EVALUATING THE STIMULATION ALGORITHMS AND .................... .... THE SYSTEM BY BEHAVIOURAL RESPONSES AND ............................... PRACTICAL EXERCISES ON MICE .......................................................... 64 3.1. Materials and methods ............................................................................. 64 3.2. Simulation results ..................................................................................... 67 3.2.1. Simulation of the NPT task ............................................................... 68 3.2.2. Response simulation in spatial exercises .......................................... 69 3.3. Analyze and evaluate experimental results on mice ................................ 74 3.3.1. Experimental results performed on NPT test .................................... 74 3.3.2. Experimental results performed on the spatial response tests .......... 79 3.4. The results of stimulating and recording experiments of the neuronal electronic activity in the hippocampus on mice80 3.4.1. Unit isolation and recording..80 3.4.2. Common characteristics of hippocampal place cells..82 3.5. The evaluation of the algorithms, stimulation and recording systems for the electrical activity of neurons83 3.5.1. The evaluation of algorithms..83 3.5.2. The evaluation of stimulating and recording system for the electrical activity of neurons ....................................................................................... 86 3.6. Chapter conclusion ................................................................................... 94 REFERENCES .............................................................................................. 100 APPENDICES v LIST OF SYMBOLS AND ABBREVIATIONS 𝐶 Ions concentration 𝐶𝑚 Capacitance of the membrane per unit plane cr The adjusted response number countInterVal Number of stops to adjust the parameter delayTime The minimum time from when the mouse receives the reward until the new reward area appears deltaTime The time it takes to count from the time the mouse receives the prize until the new reward area appears delta Limits the distance the mouse moves to get the reward 𝑑𝐷𝑀𝑇 The distance the mouse moves over a certain period of time in the DMT test 𝑑𝑅𝑅𝑃𝑆𝑇 The distance the mouse moves over a certain period of time in the RRPST test 𝑑𝑃𝐿𝑇 The distance the mouse moves over a certain period of time in the PLT test 𝑑𝑋 Diameter on the horizontal axis of the virtual environment 𝑑𝑌 Diameter on the vertical axis of the virtual environment 𝐸𝐴 Action potential of cell 𝐸𝐾 Resting potential of cell �̅� Electric field strength 𝐹 Faraday constant 𝑔𝑁𝑎 Conductivity of Na + ion channels 𝑔𝐾 Conductivity of K + ion channels 𝑔𝐿 Conductivity of secondary ion channels Interval Interval to stop for parameter adjustment 𝐼𝑖 Intra-axonal current vi 𝐼𝑘𝑡 Cell membrane stimulated current 𝐼𝑜 Extra-axonal current 𝐼𝑠 Stimulation current per unit of time IN K Intracellular K+ concentration OUT K Extracellular K+ concentration maxT The maximum time of task maxPt The maximum number of rewards maxwidth Radius of mice area moving M50 50 percent of the optimal M70 70 percent of the optimal M80 80 percent of the optimal n Valence of ions OUT Na Extracellular Na+ concentration IN Na Intracellular Na+ concentration 𝑅 Constant 𝑅𝑚 Membrane resistance per unit area 𝑇 Absolute temperature 𝑡 Time to stimulate 𝑡1 Rewarding eligible time 𝑡2 Reward receiving time 𝑡𝐿𝑇 Total amount of exercise time for the mouse 𝑡𝑆 Training time (also the total time of sessions) 𝑡𝐼𝑛 Rest time to adjust the value of the stimulating parameter 𝑉𝑚 Membrane potential Pt Number of rewards. 𝑉𝑚 – 𝑉𝑁𝑎 Transmembrane potential of Na + channel vii 𝑉𝑚 – 𝑉𝐾 Transmembrane potential of K + channel 𝑉𝑚 – 𝑉𝐿 Transmembrane potential of secondary channels 𝑉′ Electric membrane charge 𝑣𝑚̅̅ ̅̅ The mean of movement speed of the mouse in the open environment 𝑋𝑚𝑎𝑥 Maximum diameter in the horizontal axis of the virtual environment 𝑋𝑚𝑖𝑛 Minimum diameter in the horizontal axis of the virtual environment x0, y0 Reward coordinates of mouse before t xs, ys The coordinates of the mice at the time t is assigned with x0, y0 which is the original position of the mice xt ,yt Reward coordinates of mouse at 𝑡 xz1, yz1 The x and y coordinates of the center of the reward area 1 xz2, yz2 The x and y coordinates of the center of the reward area 2 xzt, yzt x, y coordinates of the center of the current reward area 𝑌𝑚𝑎𝑥 Maximum diameter in the vertical axis of the virtual environment 𝑌𝑚𝑖𝑛 Minimum diameter in the vertical axis of the virtual environment 𝑧1 Reward region 1 𝑧2 Reward region 2 wz Radius of the reward area 𝛥𝑡 System latency 𝛥𝑡𝐷𝑀𝑇 System latency in DMT test 𝛥𝑡𝑁𝑃𝑇 System latency in NPT test 𝛥𝑡𝑅𝑅𝑃𝑆𝑇 System latency in RRPST test viii 𝛥𝑡𝑃𝐿𝑇 System latency in PLT test 𝜙𝑖 Inner membrane potential 𝜙0 Outer membrane potential Membrane time constant 𝜃0 Response threshold 𝜃cr Correction threshold AD Alzheimer’s disease BSR Brain stimulation reward CCD Charge coupled device DAC Digital analog converter DC Direct current DMT Distance movement task EBS Electrical brain stimulation EF Extracellular field FPS Frames per second HNM Hippocampal network model ICSS Intracranial self – stimulation MCI Mild cognitive impairment MFB Medial forebrain bundle MTLE Mesial temporal lobe epilepsy NPT Nose – poking task OF Open – field PLT Place learning task RND, RRPST Random task, random reward place search task SPF Spike potential field SNR Signal to noise ratio ix LIST OF FIGURES page Figure 1.1. Basic structure of nerve cell... 7 Figure 1.2. Concentration and potential of ions at rest. 9 Figure 1.3. Direction of potential field lines around a neuron.... 11 Figure 1.4. Changes in membrane potential under the effect of stimulation pulses. 13 Figure 1.5. Dopamine transmission pathways of mesolimbic 14 and mesocortical systems 14 Figure 1.6. Cell membrane’s response to stimulus signals 16 Figure 1.7. Demonstration of extracellular potential recording technique and the data form............................................................................................. 19 Figure 1.8. Diagram of rodent brain and the location of the hippocampus 21 Figure 1.9. Experimental equipment for the formation of the axon cable equation 23 Figure 1.10. Electronic circuit model and voltage chart of neurons24 Figure 2.1. Electric model of neron and the theory of action potential32 Figure 2.2. Electrical neuron model according to Maeda and Makino34 Figure 2.3. Electric model of a neuron under the stimulation of direct current...35 Figure 2.4. One-dimensional stimulation pulse form with specified parameter... 36 Figure 2.5. The voltage response pattern of the model.. 37 Figure 2.6. Voltage change by stimulating intensity at 80Hz 38 Figure 2.7. Change in voltage by stimulation frequency, at the intensity of 70μA.. 39 Figure 2.8. Model of stimulating and recording the potential of neurons.. 40 x Figure 2.9. The integrated control pulse pattern of the system and the neuron stimulation pulse... 41 Figure 2.10. Model of system for stimulating and responding to nose-poke behavior 42 Figure 2.11. Flow chart of the NPT test. 45 Figure 2.13. Stimulating algorithm flowchart for DMT test.. 51 Figure 2.14. The system for stimulation and recording the action potential of neurons on mice 53 Figure 2.15. Algorithm flowchart for the RRPST test... 57 Figure 2.16. Flowchart of electric stimulation algorithm for PLT test... 61 Figure 3.2. The recording chamber for the ICSS response and.. nose-poking behaviors of mice66 Figure 3.3. The illutration of the model and the arrangement of the spatial tasks... 66 Figure 3.5. Program interface in DMT test. 70 Figure 3.6. Program interface in RRPST test.. 71 Figure 3.7. Program interface in PLT test... 72 Figure 3.8. Relationship between nasal poking behavioral response and intensity of stimulation. 77 Figure 3.9. The dependence of nose-poking response on the stimulating frequency....................... 78 Figure 3.10. Experimental results are analyzed for the spatial response tests80 Figure 3.11. The neuron activity are recorded and isolated using an offline- sorter program (Plexon) 81 Figure 3.12. Electrical activity of neurons recorded at hippocampus 82 xi Figure 3.13. Model of evaluating the stability and latency of the system for NPT task by labchart Pro v8.1.8 86 Figure 3.14. The illustration for pulses of the reward condition, reward delivery, and the delay time of the system 87 Figure 3.15. The evaluation of the stability and delay of the system for the DMT, RRPST and PLT tasks 87 Figure 3.16. Program to evaluate the stability and latency of DMT test 88 Figure 3.17. Graph of system latency time in DMT test 89 Figure 3.18. Program to evaluate systemic stability and latency in RRPST test. 90 Figure 3.19. Graph of system latency time in RRPST test. 90 Figure 3.20. Program to evaluate systemic stability and latency in PLT test. 91 Figure 3.21. Graph of system latency time in PLT test.. 92 1 INTRODUCTION 1. The necessity of the dissertation Biomedical engineering is an applied science field, which connects different sciences f ... r texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia”. Psychiatry Res., 223(3):179–186. 79. Ranck Jb Jr (1973), “Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. Part I: Behavioral correlates and firing repertoires”, Exp. Neurol., 41(2):461-531. 80. Renshaw B, Forbes A, Morison BR (1940), “Activity of isocortex and hippocampus: electrical studies with micro-electrodes”, J. Neurophysiol.,3(1):74-105. 109 81. Rotenberg A, Abel T, Hawkins RD, Kandel ER, Muller RU (2000) “Parallel instabilities of long-term potentiation, placecells, and learning caused by decreased protein kinase A activity”, J. Neurosci., 20(21):8096–8102. 82. Schröder J, Pantel J (2016), “Neuroimaging of hippocampal atrophy in early recognition of Alzheimer's disease – a critical appraisal after two decades of research”. Psychiatry Res. Neuroimaging, 247:71–78. 83. Sidman M, Brady JV, Boren JJ, Conrad DG, Schulman A (2016), “Reward Schedules and Behavior Maintained by Intracranial Self-Stimulation”, Science, 122(3174):830-831. 84. Speakman A, O'Keefe J (1990), “Hippocampal Complex Spike Cells do not Change Their Place Fields if the Goal is Moved Within a Cue Controlled Environment”. Eur. J. Neurosci., 2(6):544-555. 85. Stalnaker TA, Liu TL, Takahashi YK, Schoenbaum G (2018), “Orbitofrontal neurons signal reward predictions, not reward prediction errors”, Neurobiol. Learn. Mem., 153(Pt B):137-143. 86. Stringer KG, Martin GM, Skinner DM (2005), “The effects of hippocampal lesions on response, direction, and place learning in rats”, Behav. Neurosci., 119(4):946-952. 87. Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, et al. (2002), “Altered accumbens neural response to prediction of reward associated with place in dopamine D2 receptor knockout mice”, Proc. Natl. Acad. Sci. U S A, 99(13):8986-8991. 88. Tran AH, Tamua R, Uwano T, Kobayashi T, Katsuki M, Ono T (2005), “Dopamin D1 receptor involved in locomotor activity and accumbens neural responses to prediction of reward associated with place”, Proc. Natl. Acad. Sci. U S A, 102(6):2117-2122. 110 89. Tran AH, Uwano T, Kimura T, Hori E, Katsuki M, et al. (2008), “Dopamine D1 receptor modulates hippocampal representation plasticity to spatial novelty”, J. Neurosci., 28(50):13390-13400. 90. Whishaw IQ, McKenna JE, Maaswinkel H (1997), “Hippocampal lesions and path integration”, Curr. Opin. Neurobiol., 7(2):228-234. 91. Wierner SI, Paul CA, Eichenbaum H (1989), “Spatial and behavioral correlates of hippocampal neuronal activity”, J. Neurosci., 9(8): 2737-2763. 92. Wilkerson A, Levin ED (1999), “Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats”, Neuroscience, 89(3):743-749. 93. Wilson MA, McNaughton BL (1993), “Dynamics of the hippocampal ensemble code for space”, Science, 261(5124):1055-1058. 94. Wise RA (1996), “Addictive drugs and brain stimulation reward”, Annu. Rev. Neurosci., 19: 319-340. 95. Wolbarsht ML, Macnichol EF Jr, Wagner HG (1960), “Glass Insulated Platinum Microelectrode”, Science, 132(3436):1309-1310. 96. Yang X, Yao C, Tian T, Li X, Yan H, et al. (2018), “A novel mechanism of memory loss in Alzheimer’s disease mice via the degeneration of entorhinal–CA1 synapses”, Mol. Psychiatry, 23(2):199-210. 97. Zinyuk L, Kubik S, Kaminsky Y, Fenton AA, Bures J (2000), “Understanding hippocampal activity by using purposeful behavior: place navigation induces place cell discharge in both task-relevant and task- irrelevant spatial reference frames”, Proc. Natl. Acad. Sci. U S A, 97(7):3771-3776. 98. Zlebnik NE, Gildish I, Sesia T, Fitoussi A, Cole EA, et al. (2019), “Motivational Impairment is Accompanied by Corticoaccumbal Dysfunction in the BACHD-Tg5 Rat Model of Huntington’s Disease”, Cereb. Cortex, doi: 10.1093/cercor/bhz009. [Epub ahead of print]. 111 APPENDICES Table 1. The results of nose – poking response depend on intensity Intensity (µA) Mice’name 20 30 40 50 60 70 80 90 100 110 120 130 140 Day 1 Ctr07 14 5 1 49 95 95 127 120 159 160 136 151 150 Ctr14 14 4 84 94 144 120 107 158 125 113 77 113 34 Ctr16 12 11 9 87 135 107 93 181 200 202 204 154 194 Ctr21 4 10 7 48 66 66 107 135 115 127 162 174 39 Ctr22 3 1 11 4 7 21 167 70 165 197 177 194 225 Ctr25 6 23 52 72 100 70 119 161 61 58 19 24 75 Day 2 Ctr07 20 7 11 5 22 95 129 89 143 128 118 128 173 Ctr14 9 42 114 138 111 121 116 111 146 121 123 127 166 Ctr16 5 11 2 105 143 162 201 177 196 204 173 178 164 Ctr21 16 17 76 65 120 165 158 189 160 186 147 135 166 Ctr22 4 2 2 87 110 118 195 185 215 186 176 190 164 Ctr25 15 8 83 41 148 109 134 87 124 60 68 34 74 X 10 12 38 66 100 104 138 139 151 145 132 134 135 ±SE 2 3 11 11 13 11 10 12 12 14 15 15 17 112 Table 2. The results of nose – poking response depend on frequency Frequency (Hz) Mice’name 16 20 25 32 40 50 63 80 100 126 158 Day 1 Ctr027 12 31 18 29 58 48 123 144 145 110 146 Ctr029 15 5 5 25 10 29 233 165 184 191 253 Ctr030 19 12 24 27 82 92 158 211 191 169 192 Ctr032 19 6 5 12 16 74 168 161 145 155 143 Ctr033 4 7 18 17 27 62 93 128 112 151 74 Ctr034 12 32 20 19 23 117 147 204 195 214 179 Ctr006 24 62 103 101 191 250 190 222 240 250 181 Day 2 Ctr027 16 17 10 34 52 53 99 132 144 133 95 Ctr029 5 3 10 3 32 59 219 228 259 258 271 Ctr030 3 9 24 20 62 77 159 152 189 154 130 Ctr032 13 15 30 11 41 115 202 190 183 176 179 Ctr033 7 8 6 13 73 115 108 146 138 135 81 Ctr034 24 6 8 13 29 167 178 187 188 202 157 Ctr006 22 31 106 111 215 262 245 212 226 235 185 X 13 13 28 29 72 121 173 178 185 185 127 ±SE 2 4 9 8 16 19 13 9 11 12 15 113 Table 3. The results of system latency time in NPT test (unit: s) Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10 0.03 0.10 0.07 0.05 0.09 0.04 0.09 0.10 0.04 0.02 0.07 0.05 0.05 0.04 0.02 0.11 0.09 0.03 0.04 0.01 0.02 0.09 0.07 0.07 0.02 0.01 0.09 0.10 0.08 0.05 0.05 0.09 0.02 0.05 0.08 0.01 0.02 0.07 0.03 0.15 0.06 0.06 0.09 0.09 0.07 0.04 0.08 0.05 0.06 0.06 0.08 0.07 0.05 0.10 0.08 0.09 0.04 0.09 0.05 0.02 0.08 0.03 0.04 0.10 0.01 0.04 0.00 0.04 0.11 0.08 0.10 0.02 0.04 0.04 0.09 0.04 0.01 0.10 0.07 0.09 0.10 0.04 0.10 0.10 0.04 0.07 0.07 0.06 0.05 0.09 0.01 0.02 0.11 0.10 0.01 0.05 0.08 0.10 0.06 0.04 XNPT = 0,06 SD = 0,03 tNPT.Max = 0,15 tNPT.Min = 0,01 114 Table 4. The results of system latency time in DMT test (unit: ms) Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10 3.72 3.91 4.23 7.55 1.63 7.67 5.86 7.69 6.80 5.87 3.16 4.22 3.41 3.14 3.10 4.18 10.09 6.11 6.02 3.13 6.06 5.22 6.15 5.16 2.08 5.18 5.21 8.07 6.13 4.71 3.13 4.22 6.17 4.97 2.05 3.11 5.18 8.81 2.08 5.21 2.09 3.09 4.17 4.23 5.12 6.12 4.16 6.14 5.21 5.11 8.94 6.13 4.21 4.10 2.23 4.24 3.14 3.19 5.98 6.14 5.18 3.09 3.06 3.13 4.23 3.15 5.10 5.22 7.52 3.01 6.14 3.16 6.12 2.06 4.16 7.64 4.24 9.77 3.12 8.49 5.81 3.14 10.47 4.30 2.84 5.52 3.20 5.16 0.71 5.18 2.10 6.42 3.12 5.08 4.15 5.98 5.23 2.10 3.25 10.34 6.12 2.06 5.63 3.16 3.17 7.78 6.12 3.18 7.21 2.72 6.12 4.21 7.19 10.63 5.16 3.16 3.02 5.25 3.15 5.21 3.13 4.82 6.71 2.06 4.23 5.86 3.19 6.06 6.05 4.18 4.79 3.12 3.19 4.17 4.14 5.13 8.83 5.19 1.54 7.20 3.18 3.17 6.20 3.13 3.18 4.79 3.09 5.16 5.23 4.22 3.10 4.23 5.15 6.14 4.37 4.17 6.13 3.17 3.11 4.15 4.23 5.15 4.93 3.12 10.07 10.10 5.65 3.17 5.97 3.20 10.15 3.10 8.17 5.10 3.16 6.21 3.12 4.16 4.35 5.21 5.13 6.14 5.14 5.18 1.94 3.12 3.16 3.11 3.19 4.16 5.26 6.05 5.22 5.26 3.15 4.13 6.17 5.20 5.10 6.57 6.15 5.19 6.01 5.41 5.22 2.05 5.13 4.22 4.17 4.17 3.15 5.59 1.43 5.10 4.20 5.23 4.19 7.11 4.20 3.18 6.10 2.06 2.97 4.15 2.09 5.16 4.12 2.81 2.07 5.31 5.13 3.11 6.08 5.19 4.45 7.88 7.53 7.04 3.16 5.07 4.20 2.40 3.11 3.08 4.18 3.16 7.21 3.17 4.14 4.20 4.13 5.14 3.15 3.12 5.13 6.03 5.22 3.08 3.12 5.14 5.13 5.22 6.21 3.15 3.16 3.15 8.67 3.09 5.22 5.18 8.26 8.57 5.23 9.09 3.07 8.72 4.03 1.96 6.12 2.05 5.23 6.10 4.17 6.25 3.01 6.14 3.23 6.12 4.12 3.09 3.12 6.86 2.05 6.18 5.17 4.18 6.85 2.09 5.17 6.13 4.19 3.09 4.10 3.09 4.18 6.14 3.07 4.23 1.89 3.11 6.15 3.17 8.71 5.11 5.40 3.05 3.15 6.11 5.22 4.17 5.21 9.74 3.10 5.25 5.16 8.95 4.16 4.18 6.13 2.07 115 3.11 5.19 6.13 3.00 5.16 10.80 8.80 10.62 10.84 5.13 9.56 4.25 6.07 3.11 8.16 2.06 4.11 3.10 5.17 5.19 4.16 6.13 5.18 4.20 6.12 5.21 6.14 5.20 3.00 3.16 7.90 6.14 4.68 5.16 5.22 6.20 4.25 8.31 5.17 3.15 4.17 2.89 5.38 2.08 6.14 2.98 4.26 4.18 4.16 5.19 5.23 5.12 6.35 3.16 6.18 4.26 3.09 8.31 4.22 4.55 3.09 10.81 4.10 4.14 8.13 6.13 8.84 10.61 4.17 7.19 2.05 10.58 3.29 3.03 2.51 5.16 6.10 3.08 3.10 4.09 3.12 9.87 3.15 4.05 5.85 4.18 2.06 3.12 2.00 3.05 5.25 3.09 5.16 5.20 6.16 5.09 6.06 8.77 5.06 6.10 8.82 6.12 2.03 4.23 11.64 7.84 5.27 6.16 4.24 3.08 4.18 6.14 5.06 4.14 6.17 6.20 6.20 3.11 3.10 8.77 5.12 10.88 5.11 3.07 2.95 8.46 3.09 4.23 11.12 5.91 2.04 4.14 3.07 5.25 4.14 7.06 6.20 6.16 3.13 2.01 3.08 4.10 4.03 3.04 5.14 1.46 6.15 2.04 3.09 4.16 2.93 6.12 5.10 3.07 5.21 3.03 11.27 6.15 2.08 1.19 3.29 6.21 4.97 4.83 6.21 4.05 6.16 4.06 6.10 3.08 XDMT = 4,88 SD = 2,01 tDMT.Max = 11,64 tDMT.Min = 0,71 116 Table 5. The results of system latency time in RRPST test (unit: ms) Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10 4.00 6.45 5.36 3.32 2.81 5.24 5.83 2.96 4.03 6.79 3.12 5.45 2.09 3.21 1.13 6.12 5.17 9.72 4.09 4.20 2.12 3.11 1.96 5.35 5.14 6.06 5.02 5.09 5.22 4.38 2.11 2.52 3.14 3.18 3.09 2.05 5.17 3.04 4.09 3.23 4.16 5.68 4.18 2.03 5.16 5.06 6.03 5.14 3.16 3.05 4.13 3.04 5.01 6.13 8.52 5.17 6.18 4.24 9.37 3.18 5.02 5.07 3.10 4.15 2.00 2.10 4.14 4.17 4.26 4.15 3.15 4.22 5.13 4.13 5.13 5.07 6.11 6.14 7.63 0.77 6.05 4.06 9.68 6.18 3.13 3.08 2.13 4.13 5.16 3.07 5.18 6.13 5.05 3.08 6.15 3.06 4.17 4.13 2.01 4.23 6.08 5.04 6.27 2.56 4.13 6.51 3.13 7.81 4.20 6.07 6.25 5.07 9.27 4.08 5.21 6.06 5.07 4.17 6.12 6.11 8.02 5.87 3.17 5.23 4.13 5.20 5.17 5.08 1.97 8.02 2.00 4.24 3.04 3.09 4.22 4.06 5.04 6.19 6.15 2.12 6.13 3.02 6.17 6.81 6.12 5.37 5.24 2.05 5.16 3.09 5.83 6.16 4.14 5.14 2.08 4.10 3.11 4.18 4.22 4.18 6.12 8.85 3.80 5.49 8.42 2.06 3.72 1.98 5.16 3.12 6.05 4.18 4.19 5.34 4.17 4.13 4.26 0.00 6.14 3.04 0.54 3.05 6.98 2.09 6.16 1.96 8.33 4.18 4.24 4.23 3.19 6.79 0.00 3.32 6.09 3.90 5.30 0.00 4.12 5.06 5.12 5.11 3.10 4.35 6.00 1.97 5.14 6.13 3.15 6.13 6.11 4.15 5.12 3.13 4.13 2.10 3.15 3.13 6.29 4.03 3.20 3.02 1.62 4.09 4.07 5.12 2.02 5.13 6.17 2.05 5.16 3.13 5.23 4.17 7.00 2.06 2.10 6.15 4.09 6.04 4.19 4.16 4.07 4.11 3.14 6.13 4.13 3.12 5.16 4.16 8.44 3.19 4.16 6.13 5.14 3.20 3.20 4.13 4.26 4.16 3.20 5.15 3.09 5.03 3.18 5.05 8.75 3.12 3.05 6.07 2.07 2.11 4.11 6.17 4.13 3.12 2.11 0.00 3.16 3.18 2.09 5.79 1.58 6.10 3.05 6.03 4.07 6.11 2.02 6.08 4.13 3.17 4.16 3.22 3.14 6.18 4.15 3.12 4.17 4.35 11.23 6.05 5.12 7.83 5.12 5.03 5.12 0.00 2.09 4.15 2.07 4.23 4.24 4.19 3.19 2.06 5.58 4.25 4.14 3.02 5.18 9.48 8.20 2.00 3.10 5.05 3.13 6.13 5.38 5.79 117 5.15 3.03 7.40 7.15 6.17 6.14 4.09 4.14 4.25 3.07 8.86 4.26 6.03 3.54 6.11 6.09 3.14 6.18 3.14 3.11 3.10 1.94 5.21 2.11 3.13 5.17 5.06 4.15 8.36 3.07 5.13 6.17 6.02 1.97 4.09 3.13 5.20 3.37 2.05 4.10 3.15 4.07 5.13 4.21 5.14 5.14 6.04 3.19 9.95 5.14 4.18 6.13 3.02 5.08 5.39 2.98 2.28 2.28 7.19 3.44 3.18 4.08 4.21 6.44 2.10 4.17 11.16 0.00 4.08 8.79 4.16 5.17 5.12 5.11 5.20 5.13 5.21 5.27 6.25 3.11 5.13 4.14 5.20 2.10 7.09 6.47 6.86 0.00 6.62 4.06 6.17 5.20 3.07 5.16 3.09 4.18 3.43 2.05 8.87 5.11 5.19 3.10 3.34 7.70 3.12 0.50 3.13 0.00 5.20 6.33 2.07 5.21 6.14 5.12 5.08 4.23 5.06 0.00 5.07 4.16 6.20 5.10 4.44 4.11 5.08 4.14 4.14 0.00 6.08 6.04 4.18 3.10 3.18 3.05 5.87 6.12 2.11 0.00 5.34 3.16 4.08 3.04 4.03 3.11 3.08 5.13 4.40 0.00 5.98 5.06 5.22 3.09 3.17 3.04 4.06 7.21 5.20 5.16 5.17 5.34 6.25 5.04 4.01 6.79 4.06 5.09 5.09 3.09 4.01 2.03 XRRPST = 4,44 SD = 1,81 tRRPST.Max = 11,23 tRRPST.Min = 0,00 118 Table 6. The results of system latency time in PLT test (unit: ms) Turn 1 Turn 2 Turn 3 Turn 4 Turn 5 Turn 6 Turn 7 Turn 8 Turn 9 Turn 10 5.16 3.19 7.61 11.69 3.14 7.03 8.74 5.15 6.37 4.01 8.24 10.35 6.36 9.83 4.13 6.87 3.09 5.13 9.63 4.41 3.07 3.16 2.08 6.23 4.05 2.08 2.05 5.05 5.03 5.23 5.15 3.13 4.15 6.17 4.13 1.99 7.97 5.22 2.08 1.99 3.18 3.11 3.07 2.01 3.12 5.19 5.06 5.19 5.41 4.17 5.04 5.05 4.15 7.19 5.07 3.11 3.13 6.76 7.03 3.08 7.74 4.13 3.16 5.10 6.10 3.04 6.15 5.58 5.36 6.10 3.23 6.07 3.05 3.15 5.10 6.15 5.09 5.22 6.23 2.08 6.20 10.41 6.16 5.02 5.12 4.41 4.18 4.12 2.01 4.12 4.12 3.11 5.16 7.77 6.17 5.14 2.10 3.16 4.47 2.09 6.15 6.14 4.13 4.22 3.07 3.17 3.02 2.09 5.16 5.15 5.08 5.22 4.23 3.11 3.13 4.12 4.64 3.05 4.13 6.11 5.20 3.03 11.13 4.13 3.11 3.12 9.36 6.12 5.15 6.45 10.22 5.22 5.06 6.18 3.11 4.16 4.10 5.13 5.19 4.23 8.58 3.45 5.19 3.07 3.11 3.12 4.22 3.20 5.12 6.46 4.17 4.13 5.54 4.24 4.05 9.27 4.15 4.17 3.50 4.17 5.11 4.14 3.11 6.34 2.07 3.55 5.38 9.65 4.28 3.04 3.15 3.12 4.23 3.15 6.14 1.97 2.11 5.08 3.19 5.15 7.44 5.17 4.14 6.07 5.19 3.10 3.21 6.70 4.07 3.24 6.04 6.13 6.07 5.15 8.75 6.12 6.03 4.17 2.12 5.10 4.18 5.09 4.17 8.40 4.03 6.16 10.11 6.27 3.21 5.51 7.75 6.15 6.12 7.12 9.65 3.11 4.12 4.22 5.13 5.09 6.06 6.00 4.16 3.19 5.06 3.12 4.08 6.13 5.24 3.14 3.15 6.29 6.16 3.96 5.17 3.12 5.13 3.06 2.18 3.14 3.18 5.22 1.77 4.16 2.00 3.12 6.16 3.22 4.18 3.22 4.05 4.14 4.14 3.05 2.17 3.12 3.18 4.10 3.03 3.21 5.92 3.24 3.16 5.17 5.16 6.15 7.52 4.17 3.40 2.25 6.05 6.12 7.00 3.05 5.07 4.15 4.67 1.99 4.93 5.21 6.12 4.08 4.16 3.10 5.21 3.25 3.12 2.08 4.02 5.13 3.19 5.20 2.10 5.06 9.73 5.21 5.07 2.02 3.15 3.07 4.22 1.86 3.82 3.11 1.20 5.13 7.90 6.31 6.86 7.72 1.98 3.04 5.20 6.10 4.15 3.13 10.35 5.19 4.21 3.61 5.20 2.08 4.18 4.13 10.15 4.49 5.06 3.11 4.03 3.22 119 5.09 5.18 6.06 3.05 5.12 5.19 6.17 7.51 4.84 8.64 2.49 6.10 5.15 3.12 6.04 4.24 5.21 6.06 2.29 6.15 5.07 5.18 3.10 6.04 4.24 4.13 8.77 6.13 4.21 5.15 2.08 4.19 5.24 3.12 6.06 4.15 5.08 7.59 4.08 24.28 6.11 5.07 3.13 5.12 5.16 2.31 6.84 3.14 2.07 4.25 5.08 6.17 10.62 3.19 8.70 5.96 10.81 3.05 2.11 3.09 6.17 9.86 6.05 6.02 4.17 6.11 4.24 4.15 4.07 5.20 5.22 6.92 3.22 5.20 5.07 3.00 5.22 2.09 4.16 5.20 3.15 7.49 8.33 6.07 2.11 2.13 2.01 3.11 5.21 5.10 11.07 8.63 6.53 5.17 6.04 6.60 4.15 2.05 6.08 4.14 9.94 5.02 4.87 4.06 10.77 3.01 6.62 3.04 8.51 8.55 4.09 5.17 5.22 4.16 2.02 3.38 5.09 4.16 8.20 1.99 3.15 10.04 5.14 10.34 5.12 8.03 3.21 7.07 3.09 6.17 6.12 5.12 6.12 6.15 6.05 4.07 2.08 5.15 6.37 5.21 4.06 5.24 5.18 4.12 6.09 7.23 3.04 5.08 6.85 5.14 5.21 5.17 3.14 7.60 4.03 4.14 2.11 6.24 5.12 3.04 3.05 6.81 1.99 5.13 5.16 3.07 4.13 5.05 6.90 3.08 XPLT = 4,91 SD = 2,12 tPLT.Max = 24,28 tPLT.Min = 1,20
File đính kèm:
- luan_an_research_on_establishing_the_neural_stimulation_syst.pdf
- ThongTin KetLuanMoi LuanAn NCS TaQuocGiap.doc.doc
- TomTat LuanAn NCS TaQuocGiap_English.pdf
- TomTat LuanAn NCS TaQuocGiap_TiengViet.pdf
- TrichYeu LuanAn NCS TaQuocGiap.doc.doc