Nonlinear distortions and countermeasures for performance improvements in contemporary radio communication systems

The online Oxford English dictionary by Oxford University Press1 defines

linearity as involving or exhibiting directly proportional change in two related

quantities; nonlinearity as involving a lack of linearity between two related

qualities; and distortion as change in the form of an electrical signal or sound

wave during processing. So, the nonlinearity concept focuses on modeling

and formulating, while the distortion concept concentrates on describing the

phenomenon. However, it can be seen that distortion and nonlinearity have

a close relation, examining the phenomenon in different points of view, with

different criteria and purposes. These are basic concepts and will be the main

topics discussed throughout the thesis.

pdf 158 trang dienloan 6660
Bạn đang xem 20 trang mẫu của tài liệu "Nonlinear distortions and countermeasures for performance improvements in contemporary radio communication systems", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Nonlinear distortions and countermeasures for performance improvements in contemporary radio communication systems

Nonlinear distortions and countermeasures for performance improvements in contemporary radio communication systems
MINISTRY OF EDUCATION & TRAINING MINISTRY OF NATIONAL DEFENSE
MILITARY TECHNICAL ACADEMY
NGUYEN THANH
NONLINEAR DISTORTIONS AND
COUNTERMEASURES FOR PERFORMANCE
IMPROVEMENTS IN CONTEMPORARY
RADIO COMMUNICATION SYSTEMS
A thesis for the degree of Doctor of Philosophy
HA NOI - 2019
MINISTRY OF EDUCATION & TRAINING MINISTRY OF NATIONAL DEFENSE
MILITARY TECHNICAL ACADEMY
NGUYEN THANH
NONLINEAR DISTORTIONS AND
COUNTERMEASURES FOR PERFORMANCE
IMPROVEMENTS IN CONTEMPORARY
RADIO COMMUNICATION SYSTEMS
A thesis for the degree of Doctor of Philosophy
Specialization : Electronic Engineering
Specialization code : 9 52 02 03
Supervisor:
Assoc. Prof. NGUYEN QUOC BINH
HA NOI - 2019
THESIS DECLARATION
I hereby declare that all data and results shown in this thesis are my own
original work created under the guidance from my supervisor. These data
and results are honestly presented and are not yet published in any previous
works. I also declare that, as required by academic rules and ethical conduct,
I have fully cited and referenced all materials and results that are not original
to this work.
Ha Noi, November 2019
Nguyen Thanh
ACKNOWLEDGMENTS
At the very first words, it takes a lot of good karma to have Assoc. Prof.
Nguyen Quoc Binh as a mentor. His insightful thinking, thoughtful enthusi-
asm and unbounded kindness have always helped change his students' lives
for the better, and I am no exception to this rule. I will always be indebted to
him for igniting my passion for the profession when I was an undergraduate
and then for guiding me through the most memorable years of my life doing
this thesis.
My heartfelt thanks also go to respected senior colleague from Department
of Communications, Faculty of Radio-Electronic Engineering, Le Quy Don
Technical University, and also to other lecturers, professors and authorities
for their valuable ideas, comments and reviews that actually make this work
much better.
I would like to thank the staff from Office of Postgraduate Academic Af-
fairs, Le Quy Don Technical University for their devoted help in making
administrative procedures extremely convenient.
I am grateful to all my friends here at Le Quy Don Technical University
and elsewhere. Each one of them, in his or her own unique way, has left on
me a lasting impression that can not be described in words.
Finally, I really would like to thank my dear parents and my small family
for sharing the simple yet great joy of life in every moment.
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
List of Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 1. Introduction to Nonlinear Distortions and Practical
MIMO-STBC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.1. Main causes of nonlinear distortions in radio communication
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2. Nonlinear HPA model classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3. Nonlinear HPA distortion impacts in SISO systems . . . . . . . . . . . . . 24
1.4. Multiple-input multiple-output systems . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5. MIMO in satellite communication systems . . . . . . . . . . . . . . . . . . . . . . 35
1.6. Nonlinear HPA distortion impacts in MIMO systems . . . . . . . . . . . . 39
1.7. Summary of chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
i
ii
Chapter 2. Nonlinear HPA Modeling and Proposed Polysine
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2. Instantaneous nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.1. Cann original model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.2. Cann new model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3. Envelope nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.1. Envelope representation of bandpass signals . . . . . . . . . . . . . . . . . 50
2.3.2. Saleh model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.3. Rapp model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.4. Cann envelope model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.5. Polynomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.6. Proposed polysine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3.7. Other conventional HPA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4. Applications of HPA models in communication simulation . . . . . . . 63
2.4.1. Representation of envelope models . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.4.2. Simulation with two-tone testing signal. . . . . . . . . . . . . . . . . . . . . . 65
2.4.3. Simulation with continuous-spectrum testing signal. . . . . . . . . . 67
2.5. Summary of chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Chapter 3. Predistortion Methods for Nonlinear Distortions due
to HPAs in MIMO-STBC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
iii
3.2. Nonlinear distortion effects in MIMO-STBC systems . . . . . . . . . . . . 74
3.2.1. MIMO-STBC 2× nR system model . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.2. Nonlinear distortion effects incurred by HPAs . . . . . . . . . . . . . . . 77
3.3. Predistortion schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.3.1. Ideal inverse Saleh predistortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.3.2. Adaptive secant predistortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.3.3. Adaptive Newton predistortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.3.4. Adaptive LMS polynomial-approximated predistortion . . . . . . 89
3.4. Performance evaluation for predistored MIMO-STBC systems . . . 90
3.4.1. System parameters and performance measures. . . . . . . . . . . . . . . 90
3.4.2. Receive signal constellations with predistortion . . . . . . . . . . . . . . 91
3.4.3. Error vector module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.4.4. Modulation error ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3.4.5. Bit error ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.5. Summary of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Chapter 4. Automatic Phase Estimation and Compensation for
Nonlinear Distortions due to HPAs in MIMO-STBC Systems 99
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2. Phase rotation impact due to nonlinear HPAs for the MIMO-
STBC signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.1. Nonlinear MIMO-STBC system model with phase estimation
and compensation at the receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.2. Phase rotation impact due to nonlinear HPAs . . . . . . . . . . . . . . 103
iv
4.3. Phase estimation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3.1. Gaussian approximation for the nonlinear model . . . . . . . . . . . 107
4.3.2. Optimal blind feedforward phase estimation . . . . . . . . . . . . . . . . 108
4.3.3. Harmonic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3.4. Biharmonic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.4. Performance evaluation of the phase estimation and phase
compensation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.4.1. Performance of the phase estimator . . . . . . . . . . . . . . . . . . . . . . . . 114
4.4.2. Optimum proximity of the estimated phases . . . . . . . . . . . . . . . 115
4.4.3. Total degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.4.4. Bit error ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5. Summary of chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Final Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
List of Acronyms
2/3D 2-/3-Dimensional
2/3/4/5G Second/Third/Fourth/Fifth Generation
3GPP Third Generation Partnership Project
AC Alternative Current
ADC Analog-to-Digital Converter
AM-AM Amplitude Modulation-to-Amplitude Modulation
AM-PM Amplitude Modulation-to-Phase Modulation
APSK Amplitude and Phase-Shift Keying
ASK Amplitude-Shift Keying
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BLAST Bell-Labs Layered Space-Time (Architecture)
BO Back-Off
BS Base Station
CCI Co-Channel Interference
DAC Digital-to-Analog Converter
dB Decibel
dBr dB relative to reference level
DC Direct Current
dd distance degradation
DVB Digital Video Broadcasting
v
vi
DVB-S2 DVB - Satellite - Second Generation
DVB-S2X DVB-S2 Extension
DVB-SH DVB - Satellite services to Handhelds
DVB-T DVB - Terrestrial
EPC Electronic Power Conditioner
ETSI European Telecommunications Standards Institute
EVM Error Vector Module/Magnitude
FS Fixed Satellite
FST Fixed Satellite Terminal
FSK Frequency-Shift Keying
GSO GeoStationary Orbit
HPA High Power Amplifier
IBO Input Back-Off
IEEE Institute of Electrical and Electronics Engineers
IMD Inter-Modulation Distortion
IMP Inter-Modulation Product
IMP3/5 Third-/Fifth-order IMP
ISI Inter-Symbol Interference
LDMOS Laterally-Diffused Metal Oxide Semiconductor
LHCP Left-Hand Circular Polarization
LMS Least Mean Square
LMSat Land Mobile Satellite
LTE Long Term Evolution (3.9G)
LTE-A LTE-Advanced (4G)
vii
LOS Line-Of-Sight
MER Modulation Error Ratio
MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
MLD Maximum-Likelihood Detection
MMSE Minimum Mean Square Error
MRC Maximum-Ratio Combining
MS Mobile Satellite
MSB Mobile Satellite Broadcasting
MST Mobile Satellite Terminal
MU Multi-User
NGSO Non-GeoStationary Orbit
NLOS Non LOS
OAPS Optimum Additional Phase Shifting
OBO Output Back-Off
OrbD Orbital Diversity
OFDM Orthogonal Frequency-Division Multiplexing
OSTBC Orthogonal Space-Time Block Coding
PD PreDistortion
PSK Phase-Shift Keying
PTC Polarization-Time Coding
QAM Quadrature Amplitude Modulation
QoS Quality of Service
QPSK Quadrature Phase-Shift Keying
viii
RF Radio Frequency
RHCP Right-Hand Circular Polarization
SatCom Satellite Communications
SatD Satellite Diversity
SD Spatial Diversity
SEL Soft Envelope Limiter
SER Symbol Error Ratio
SF Space-Frequency
SIMO Single-Input Multiple-Output
SINR Signal-to-Interference-plus-Noise Ratio
SISO Single-Input Single-Output
SM Spatial Multiplexing
SNR Signal-to-Noise Ratio
SRRC Square-Root Raised Cosine
SSPA Solid-State Power Amplifier
ST Space-Time
STBC Space-Time Block Coding
STF Space-Time-Frequency
STTC Space-Time Trellis Coding
TD Total Degradation
TR-STBC Time-Reversal STBC
TWT Travelling-Wave Tube
TWTA TWT Amplifier
V-BLAST Vertical-BLAST
List of Figures
1.1 Simplified block diagram of a typical radio transmitter. . . . . . 15
1.2 The IEEE 802.11a spectrum mask for the 20 MHz bandwidth
signal [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 HPA modeling classification. . . . . . . . . . . . . . . . . . . . . 18
1.4 Typical amplitude and phase distortion characteristics of an HPA
(*)
.23
1.5 Spectrum regrowth due to nonlinear HPA
(*)
. . . . . . . . . . . . 25
1.6 Constellation warping due to nonlinear HPA. . . . . . . . . . . . 26
1.7 Nonlinear ISI due to nonlinear HPA. . . . . . . . . . . . . . . . 26
1.8 Simplified MIMO system diagram. . . . . . . . . . . . . . . . . 28
1.9 MIMO technique classification
(*)
[68]. . . . . . . . . . . . . . . . 29
1.10 Dual-polarized MIMO land mobile satellite system model. . . . . 38
1.11 Simplified MIMO system with nonlinear HPA. . . . . . . . . . . 39
2.1 Characteristic functions of the Cann new model. . . . . . . . . . 47
2.2 Characteristic functions of the Rapp/Cann original model (2.1)
compared to that of the Cann new model (2.2). . . . . . . . . . . 48
2.3 Third order (a) and fifth order (b) IMPs created by the Cann
new model (2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4 AM-AM functions of the Cann envelope model corresponding
to the instantaneous model (2.2). . . . . . . . . . . . . . . . . . 52
2.5 AM-AM (a) and AM-PM (b) functions of typical envelope models. 53
ix
x2.6 AM-AM functions of the Rapp model with different sharpnesses. 55
2.7 AM-AM functions of the Cann, Rapp, polynomial, odd-order
polynomial and polysine models fitted to the measured data. . . 57
2.8 Two-tone waveform, f1 = 7 [Hz], f2 = 10 [Hz]. . . . . . . . . . . 63
2.9 Polar envelope model block diagram [52]. . . . . . . . . . . . . . 64
2.10 Third order (a) and fifth order (b) IMPs of five models in
Figure 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.11 Amplitude histograms of two-tone (a) and 1+7-APSK (b) test-
ing signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.12 Receive constellations (a) and sp ... f the 1999 IEEE Int. Conf. on Commun., ICC '99,
Vancouver, British Columbia, Canada, pp. 1603-1607.
[27] Elias P., Feinstein A., and Shannon C. (1956), A note on the maximum
flow through a network, IRE Trans. on Inform. Theory, vol. 2, no. 4,
pp. 117-119.
[28] Eroz M. and Lee L-N. (2014), Method and apparatus for improved high
order modulation, US Patent no. 8,674,758.
[29] ETSI (2009), Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation systems for Broadcast-
ing, Interactive Services, News Gathering and other broadband satellite
applications, ETSI, EN 302 307.
131
[30] ETSI (2011), Digital Video Broadcasting (DVB); System Specifications
for Satellite services to Handheld devices (SH) below 3 GHz, ETSI TS
102 585 V1.2.1.
[31] ETSI (2014), Digital Video Broadcasting (DVB); Second generation
framing structure, channel coding and modulation systems for Broadcast-
ing, Interactive Services, News Gathering and other broadband satellite
applications Part II: S2 - Extensions (DVB-S2X), ETSI, EN 302 307-2.
[32] Fadhel M. Ghannouchi, Oualid Hammi, Mohamed Helaoui (2015), Be-
havioral modeling and predistortion of wideband wireless transmitters,
John Wiley & Sons, New York.
[33] Farhang-Boroujeny B. (2010), Signal processing techniques for software
radios, Chapter 3, Lulu Publishing House.
[34] Fernandes C. A. R. (2009), Nonlinear MIMO communication systems:
Channel estimation and information recovery using Volterra models,
PhD thesis, Universite de Nice Sophia Antipolis, France.
[35] Foschini G. J. (1996), Layered space-time architecture for wireless com-
munication in a fading environment when using multi-element antennas,
Bell Labs Technical J., vol. 1, no. 2, pp. 41-59.
[36] Foschini G. J., Michael. J. Gans (1998). On limits of wireless communi-
cations in a fading environment when using multiple antennas,Wireless
Personal Commun., vol. 6, no. 3, pp. 311-335.
[37] Frigyes I., and Horv¡th P. (2008), Application of modern diversity meth-
ods in satellite communications, in Proc. of the 26th Int. Commun. Satel-
lite Systems Conf. (ICSSC), San Diego, CA, USA, pp. 1-13.
132
[38] Giovanni G. and Marco P. (2018), Microwave electronics, Cambridge
University Press, New York.
[39] Godara L. C. (1997), Application of antenna arrays to mobile communi-
cations: Part I: Performance improvement, feasibility, and system consid-
erations; Part II: Beam-forming and direction-of-arrival considerations,
Proc. of the IEEE, vol. 85, no. 7/8, pp. 1031-1060, 1195-1245.
[40] Goldsmith A. (2005), Wireless communications, Cambridge University
Press, New York.
[41] Gradshteyn I.S. and Ryzhik I.M. (2015), Table of integrals, series, and
products, Academic Press, London, UK.
[42] Hampton J. R. (2013), Introduction to MIMO communications, Cam-
bridge University Press, New York.
[43] Hasan Z., Boostanimehr H., and Bhargava V. K. (2011), Green cellular
networks - A survey, some research issues and challenges, IEEE Com-
mun. Surveys & Tutorials, vol. 13, no. 4, pp. 524-540.
[44] Haupt L. Randy (2010), Antenna arrays - A computational approach,
John Wiley & Sons, New Jersey.
[45] Haykin S. (1996), Adaptive filter theory, 3rd Edition, Prentice-Hall, Up-
per Saddle River, NJ. 07458.
[46] Herbert J. Reich, John G. Skalnik, Philip F. Ordung, and Herbert L.
Krauss (1952), Microwave principles, D. Van Nostrand Company Inc.,
New York.
133
[47] Hesham El Gamal, A. Roger Hammons, Jr., Youjian (Eugene) Liu,
Michael P. Fitz, and Oscar Y. Takeshita (2003), On the design of space-
time and space-frequency codes for MIMO frequency-selective fading
channels, IEEE Trans. on Inform. Theory, vol. 49, no.9, pp. 2277-2292.
[48] Hofmann C., Storek K.-U., Schwarz R. T., Knopp A. (2016), Spatial
MIMO over satellite: A proof of concept, in Proc. of the 2016 IEEE Int.
Conf. on Communication, ICC16, Kuala Lumpur, Malaysia.
[49] Horv¡th P., and Frigyes I. (2006), Application of the 3D polarization
concept in satellite MIMO systems, in Proc. of the 49th Annual IEEE
Global Telecommun. Conf. (GLOBECOM '06), San Francisco, California,
USA.
[50] Horv¡th P., Karagiannidis K. G., King R. P., Stavrou S., and Frigyes I.
(2007), Investigations in satellite MIMO channel modelling: Accent on
polarization, EURASIP J. on Wireless Commun. and Networking, vol.
2007, Article ID 98942, pp. 1-10.
[51] Jacovitti G., and Neri A. (2000), Multiresolution circular harmonic de-
composition, IEEE Trans. Signal Processing, vol. 48, no. 11, pp. 3242-
3247.
[52] Jeruchim, M., Balaban, P., and Shanmugan, K. (2000), Simulation of
communication systems, Plenum Press, Berlin.
[53] Jingon Joung, Chin Keong Ho, Koichi Adachi, and Sumei Sun (2014),
A survey on power-amplifier-centric techniques for spectrum and energy
efficient wireless communications, IEEE Commun. Surveys & Tutorials,
vol. 17, no. 1, pp. 315-333.
134
[54] John Proakis, and Masoud Salehi (2008), Digital communications, 5th
Edition, McGraw-Hill Education, New York.
[55] John L.B. Walker (2012), Handbook of RF and microwave power ampli-
fiers, Cambridge University Press, New York.
[56] Kay, S. M. (1993), Fundamentals of statistical signal processing: Estima-
tion theory, Prentice Hall, New Jersey.
[57] Kelly Mekechuk, Wan-Jong Kim, Shawn P. Stapleton, and Jong Heon
Kim (2004), Linearizing power amplifiers using digital predistortion,
EDA tools and test hardware, High Frequency Electronics, Summit Tech-
nical Media, LLC, 
Apr04/HFE0404_Stapleton.pdf.
[58] King P.R., Evans B.G., and Stavrou S. (2005), Physical-statistical model
for the land mobile-satellite channel applied to satellite/HAP MIMO, in
Proc. of the 11th European Wireless Conf., Nicosia, Cyprus, pp. 198-204.
[59] King R.P., Horv¡th P., P²rez-Font¡n F., Frigyes I., and Stavrou S. (2005),
Satellite channel impairment mitigation by diversity techniques, in
Proc. 2005 IST Mobile and Wireless Communication Summit, Dresden,
Germany, pp 1-5.
[60] Lei Guan, and Anding Zhu (2014), Green communications: Digital pre-
distortion for wideband RF power amplifiers, IEEE Microwave Mag.,
vol. 15, no. 7, pp. 84-99.
[61] Ling Fuyun (2017), Synchronization in digital communication systems,
Cambridge University Press, Cambridge, UK.
135
[62] Litva, J. and Lo, T. K-Y (1996), Digital beamforming in wireless com-
munications, Artech House, Norwood MA.
[63] Liu Z., Giannakis G. B., Barbarossa S., and Scaglione A. (2001), Trans-
mit antennae space-time block coding for generalized OFDM in the pres-
ence of unknown multipath, IEEE J. Select. Areas Commun., vol. 19,
no. 7, pp. 1352-1364.
[64] Loyka S.L., Mosig J.R. (2000), New behavioral-level simulation tech-
nique for RF/microwave applications. Part I: Basic concepts, Int. J.
of RF and Microwave Computer-Aided Engineering, vol. 10, no. 4, pp.
221-237.
[65] Loyka S.L. (2000), On the use of Cann' model for nonlinear behavioral-
level simulation, IEEE Trans. on Veh. Tech., vol. 49, no. 5, pp. 1982-
1985.
[66] Mietzner J., Hoeher P.A. , and M. Sandell (2003) Compatible improve-
ment of the GSM/EDGE system by means of space-time coding tech-
niques, IEEE Trans. on Wireless Commun., vol. 2, no. 4, pp. 690-702.
[67] Middleton D. (2012), Non-Gaussian Statistical Communication Theory,
John Wiley & Sons, Inc., Hoboken, New Jersey.
[68] Mietzner J., et al. (2009), Multiple-antenna techniques for wireless com-
munications - a comprehensive literature survey, IEEE Commun. Sur-
veys & Tutorials, vol. 11, no. 2, pp. 87-105.
[69] Minkoff J. (1985), The role of AM-to-PM conversion in memoryless non-
linear, IEEE Trans. on Wireless Commun., vol. 33, no. 2, pp. 139-144.
136
[70] Naguib A. F., Seshadri N., and Calderbank A. R. (2000), Increasing
data rate over wireless channels, IEEE Signal Processing Mag., vol. 17,
no. 3, pp. 76-92.
[71] Nguyen Tat Nam, and Nguyen Quoc Binh (2015), Using optimal ad-
ditional phase shift to reduce the nonlinear distortion effects in MIMO
STBC systems, in Proc. The 2015 National Conf. on Elect., Commun.
and Inform. Technol. - REV-ECIT 2015, Ho Chi Minh city, Vietnam,
pp. 303-308.
[72] O'Droma M., Meza S., and Lei Y. (2009), New modified Saleh models
for memoryless nonlinear power amplifier behavioural modelling, IEEE
Commun. Lett., vol. 13, no. 6, pp 399-401.
[73] Oussama B. Belkacem, Mohamed L. Ammari, Rafik Zayani and Ridha
Bouallegue. (2013), Capacity analysis of MIMO-STBC system in the
presence of nonlinear distortion and neural network compensator, Proc.
of The Tenth Int. Symp. on Wireless Commun. Systems (ISWCS), Ilme-
nau, Germany, pp. 1-5.
[74] Oussama B. Belkacem, Mohamed L. Ammari, Rafik Zayani and Ridha
Bouallegue (2014), On the effect of neural network compensation on
MIMO-STBC systems in the presence of HPA nonlinearity, Trans. on
Emerging Telecommun. Technol., vol. 26 no. 9, pp. 1119-1130.
[75] Pantelis-Daniel A., Konstantinos L., Massimo B., Athanasios P., Panay-
otis C., Riccardo D. G. (2011), MIMO over satellite: A review, IEEE
Communication Surveys & Tutorials, vol. 13, no. 1, pp. 27-51.
137
[76] Peter Almers, Fredrik Tufvesson, and Andreas F. Molisch (2006), Key-
hole effect in MIMO wireless channels: Measurements and theory, in
IEEE Trans. on Wireless Commun., vol. 5, no. 12, pp. 3596-3604.
[77] Perez-Neira A, et al. (2011), MIMO channel modeling and transmis-
sion techniques for multi-satellite and hybrid satellite-terrestrial mobile
networks, Elsevier's Physical Commun., vol. 4, no. 2, pp. 127-139.
[78] Petrov A., and Sergienko A. (2012), Analytical evaluation of perfor-
mance for harmonic and biharmonic methods of blind phase offset esti-
mation, in Proc. 13th IEEE Int. Symp. on Problems of Redundancy in
Inform. and Control Systems, Saint-Petersburg, pp. 57-61.
[79] Petrov A., and Sergienko A. (2013), Optimal blind biharmonic feedfor-
ward phase offset estimation for QAM signals in Proc. 2013 IEEE Int.
Conf. on Commun. (ICC), Budapest Hungary, pp. 4756 - 4760.
[80] Pupolin S., and Greenstein L.J. (1987), Performance analysis of digi-
tal radio links with nonlinear transmit amplifiers, IEEE J. Sel. Areas
Commun., vol. SAC-5, no. 3, pp. 535-546.
[81] Qi J., and Assa S. (2010), Analysis and compensation of power amplifier
nonlinearity in MIMO transmit diversity systems, IEEE Trans. on Veh.
Technol., vol. 59, no. 6, pp. 2921 - 2931.
[82] Rapp Christoph (1991), Effects of HPA-nonlinearity on a 4-DPSK/
OFDM-signal for a digital sound broadcasting signal, Proc. of European
Conf. on Satellite Commun., pp. 179-184, Liege, Belgium.
138
[83] Rice F., Cowley B., Moran B., and Rice M. (2001), Cramer-Rao lower
bounds for QAM phase and frequency estimation, IEEE Trans. Com-
mun., vol. 49, no. 9, pp. 1582-1591.
[84] Saleh A. A. M. (1981) Frequency-independent and frequency-dependent
nonlinear models of TWT amplifiers, IEEE Trans. on Commun., vol.
29, no. 11, pp. 1715-1720.
[85] Seshadri N. and Winters J. H. (1993), Two signaling schemes for improv-
ing the error performance of Frequency-Division-Duplex (FDD) transmis-
sion systems using transmitter antenna diversity, in Proc. of the 1993
IEEE Veh. Technol. Conf. (VTC), Secaucus, New Jersey, pp. 508-511.
[86] Shaw, C. and Rice, M. (2009), Turbo-coded APSK for aeronautical
telemetry, in Proc. of IEEE Int. Conf. on Waveform Diversity and De-
sign, Orlando FL, USA, pp. 317-321.
[87] Sheng Chen (2011), An efficient predistorter design of compensating
nonlinear memory high power amplifier, IEEE Trans. Broadcasting, vol.
57, no. 4, pp. 856-865.
[88] Siljak D. Dragoslav (1969), Nonlinear systems: Parameter analysis and
design, John Wiley & Sons, New York.
[89] Tarokh V., Seshadri N., and Calderbank A. R. (1998), Space-time codes
for high data rate wireless communication: Performance criterion and
code construction, IEEE Trans. on Inform. Theory, vol. 44, no.2, pp.
744-765.
139
[90] Tarokh V., Jafarkhani H., and Calderbank A. R. (1999) Space-time
block codes from orthogonal designs, IEEE Trans. on Inform. Theory,
vol. 45, no. 5, pp. 1456-1467.
[91] Teikari Ilari, Digital predistortion linearization methods for RF power
amplifiers, PhD thesis, Helsinki University of Technol., Espoo, Finland,
2008.
[92] Telatar E. (1999), Capacity of multi-antenna Gaussian channels, Euro-
pean Trans. on Telecommun., vol. 10, no. 6, pp. 585-596.
[93] Tulino A. M., Lozano A., and Verdu S. (2005), Impact of antenna corre-
lation on the capacity of multiantenna channels, IEEE Trans. on Inform.
Theory, vol. 51, no. 7, pp. 2491-2509.
[94] Tuyen T. D., Tan T. D., Vu T. A., and Tue H. H. (2009), Performance of
STBC MIMO-OFDM using pilot-aided channel estimation and adaptive
pre-distortion, in Proc. Int. Conf. on Advanced Technol. for Commun.
- ATC 2009, Hai Phong, Vietnam, pp. 104-107.
[95] Van Nee, R. and Prasad, R. (2000), OFDM for wireless multimedia com-
munications, Artech House, Norwood MA.
[96] Vasjanov A., Barzdenas V. (2018), A review of advanced CMOS RF
power amplifier architecture trends for low power 5G wireless networks,
Electronics 7, no. 11: 271. https://doi.org/10.3390/electronics7110271.
[97] Wasaff H.D., Adaptive pre-distortion for nonlinear high power amplifiers
in OFDM systems, PhD thesis, The Polytechnic University of Catalonia,
Catalonia, Spain, 2004.
140
[98] Weisstein, Eric W. Secant Method. From MathWorldA Wolfram web
resource 
[99] Weisstein, Eric W., Newton's Method. From MathWorldA Wolfram
web resource 
[100] Whitney Q. Lohmeyer, Raichelle J. Aniceto, and Kerri L. Cahoy (2016),
Communication satellite power amplifiers: Current and future SSPA and
TWTA technologies, Int. J. of Satellite Comm. and Networking, vol. 34,
no. 2 pp. 95-113.
[101] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian
P. Flannery (2007), Numerical recipes - The art of scientific computing,
Third edition, Cambridge University Press, New York.
[102] Wittneben A. (1991), Basestation modulation diversity for digital
simulcast, in 1991 Proc. of the 41st Veh. Technol. Conf. - Gateway to
the Future Technol. in Motion, pp. 848-853.
[103] Wolniansky P. W., Foschini G. J., Golden G. D., and Valenzuela R.
(1998), V-BLAST: an architecture for realizing very high data rates
over the rich-scattering wireless channel, in Proc. of the 1998 URSI Int.
Symp. on Signals, Systems, and Electronics, pp. 295-300.
[104] Xiaochen Lin, Minglu Jin, and Aifei Liu (2007), An improved adaptive
digital predistortion using discrete Newton's method, in Proc. 2007 Int.
Conf. on Wireless Communication, Networking and Mobile Computing,
Shanghai, pp. 834-837.
141
[105] Zheng, L. and Tse, D. (2003), Diversity and multiplexing: A funda-
mental tradeoff in multiple-antenna channels, IEEE Trans. on Inform.
Theory, vol. 49, no. 5, pp. 1073-1096.

File đính kèm:

  • pdfnonlinear_distortions_and_countermeasures_for_performance_im.pdf
  • docThong tin ve LA dua len mang_Thanh.doc
  • pdfTomTatLA_Thanh.pdf