Nonlinear distortions and countermeasures for performance improvements in contemporary radio communication systems
The online Oxford English dictionary by Oxford University Press1 defines
linearity as involving or exhibiting directly proportional change in two related
quantities; nonlinearity as involving a lack of linearity between two related
qualities; and distortion as change in the form of an electrical signal or sound
wave during processing. So, the nonlinearity concept focuses on modeling
and formulating, while the distortion concept concentrates on describing the
phenomenon. However, it can be seen that distortion and nonlinearity have
a close relation, examining the phenomenon in different points of view, with
different criteria and purposes. These are basic concepts and will be the main
topics discussed throughout the thesis.
Bạn đang xem 20 trang mẫu của tài liệu "Nonlinear distortions and countermeasures for performance improvements in contemporary radio communication systems", để tải tài liệu gốc về máy hãy click vào nút Download ở trên
Tóm tắt nội dung tài liệu: Nonlinear distortions and countermeasures for performance improvements in contemporary radio communication systems
MINISTRY OF EDUCATION & TRAINING MINISTRY OF NATIONAL DEFENSE MILITARY TECHNICAL ACADEMY NGUYEN THANH NONLINEAR DISTORTIONS AND COUNTERMEASURES FOR PERFORMANCE IMPROVEMENTS IN CONTEMPORARY RADIO COMMUNICATION SYSTEMS A thesis for the degree of Doctor of Philosophy HA NOI - 2019 MINISTRY OF EDUCATION & TRAINING MINISTRY OF NATIONAL DEFENSE MILITARY TECHNICAL ACADEMY NGUYEN THANH NONLINEAR DISTORTIONS AND COUNTERMEASURES FOR PERFORMANCE IMPROVEMENTS IN CONTEMPORARY RADIO COMMUNICATION SYSTEMS A thesis for the degree of Doctor of Philosophy Specialization : Electronic Engineering Specialization code : 9 52 02 03 Supervisor: Assoc. Prof. NGUYEN QUOC BINH HA NOI - 2019 THESIS DECLARATION I hereby declare that all data and results shown in this thesis are my own original work created under the guidance from my supervisor. These data and results are honestly presented and are not yet published in any previous works. I also declare that, as required by academic rules and ethical conduct, I have fully cited and referenced all materials and results that are not original to this work. Ha Noi, November 2019 Nguyen Thanh ACKNOWLEDGMENTS At the very first words, it takes a lot of good karma to have Assoc. Prof. Nguyen Quoc Binh as a mentor. His insightful thinking, thoughtful enthusi- asm and unbounded kindness have always helped change his students' lives for the better, and I am no exception to this rule. I will always be indebted to him for igniting my passion for the profession when I was an undergraduate and then for guiding me through the most memorable years of my life doing this thesis. My heartfelt thanks also go to respected senior colleague from Department of Communications, Faculty of Radio-Electronic Engineering, Le Quy Don Technical University, and also to other lecturers, professors and authorities for their valuable ideas, comments and reviews that actually make this work much better. I would like to thank the staff from Office of Postgraduate Academic Af- fairs, Le Quy Don Technical University for their devoted help in making administrative procedures extremely convenient. I am grateful to all my friends here at Le Quy Don Technical University and elsewhere. Each one of them, in his or her own unique way, has left on me a lasting impression that can not be described in words. Finally, I really would like to thank my dear parents and my small family for sharing the simple yet great joy of life in every moment. Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Mathematical Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 1. Introduction to Nonlinear Distortions and Practical MIMO-STBC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.1. Main causes of nonlinear distortions in radio communication systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.2. Nonlinear HPA model classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3. Nonlinear HPA distortion impacts in SISO systems . . . . . . . . . . . . . 24 1.4. Multiple-input multiple-output systems . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.5. MIMO in satellite communication systems . . . . . . . . . . . . . . . . . . . . . . 35 1.6. Nonlinear HPA distortion impacts in MIMO systems . . . . . . . . . . . . 39 1.7. Summary of chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 i ii Chapter 2. Nonlinear HPA Modeling and Proposed Polysine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.2. Instantaneous nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.1. Cann original model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.2.2. Cann new model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.3. Envelope nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 2.3.1. Envelope representation of bandpass signals . . . . . . . . . . . . . . . . . 50 2.3.2. Saleh model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.3. Rapp model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.3.4. Cann envelope model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.3.5. Polynomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.3.6. Proposed polysine model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.3.7. Other conventional HPA models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 2.4. Applications of HPA models in communication simulation . . . . . . . 63 2.4.1. Representation of envelope models . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.4.2. Simulation with two-tone testing signal. . . . . . . . . . . . . . . . . . . . . . 65 2.4.3. Simulation with continuous-spectrum testing signal. . . . . . . . . . 67 2.5. Summary of chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Chapter 3. Predistortion Methods for Nonlinear Distortions due to HPAs in MIMO-STBC Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 iii 3.2. Nonlinear distortion effects in MIMO-STBC systems . . . . . . . . . . . . 74 3.2.1. MIMO-STBC 2× nR system model . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.2.2. Nonlinear distortion effects incurred by HPAs . . . . . . . . . . . . . . . 77 3.3. Predistortion schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3.1. Ideal inverse Saleh predistortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3.2. Adaptive secant predistortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.3. Adaptive Newton predistortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.3.4. Adaptive LMS polynomial-approximated predistortion . . . . . . 89 3.4. Performance evaluation for predistored MIMO-STBC systems . . . 90 3.4.1. System parameters and performance measures. . . . . . . . . . . . . . . 90 3.4.2. Receive signal constellations with predistortion . . . . . . . . . . . . . . 91 3.4.3. Error vector module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.4. Modulation error ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 3.4.5. Bit error ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.5. Summary of chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Chapter 4. Automatic Phase Estimation and Compensation for Nonlinear Distortions due to HPAs in MIMO-STBC Systems 99 4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.2. Phase rotation impact due to nonlinear HPAs for the MIMO- STBC signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.1. Nonlinear MIMO-STBC system model with phase estimation and compensation at the receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2.2. Phase rotation impact due to nonlinear HPAs . . . . . . . . . . . . . . 103 iv 4.3. Phase estimation problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.1. Gaussian approximation for the nonlinear model . . . . . . . . . . . 107 4.3.2. Optimal blind feedforward phase estimation . . . . . . . . . . . . . . . . 108 4.3.3. Harmonic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.4. Biharmonic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4. Performance evaluation of the phase estimation and phase compensation scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4.1. Performance of the phase estimator . . . . . . . . . . . . . . . . . . . . . . . . 114 4.4.2. Optimum proximity of the estimated phases . . . . . . . . . . . . . . . 115 4.4.3. Total degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 4.4.4. Bit error ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.5. Summary of chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Final Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 List of Acronyms 2/3D 2-/3-Dimensional 2/3/4/5G Second/Third/Fourth/Fifth Generation 3GPP Third Generation Partnership Project AC Alternative Current ADC Analog-to-Digital Converter AM-AM Amplitude Modulation-to-Amplitude Modulation AM-PM Amplitude Modulation-to-Phase Modulation APSK Amplitude and Phase-Shift Keying ASK Amplitude-Shift Keying AWGN Additive White Gaussian Noise BER Bit Error Rate BLAST Bell-Labs Layered Space-Time (Architecture) BO Back-Off BS Base Station CCI Co-Channel Interference DAC Digital-to-Analog Converter dB Decibel dBr dB relative to reference level DC Direct Current dd distance degradation DVB Digital Video Broadcasting v vi DVB-S2 DVB - Satellite - Second Generation DVB-S2X DVB-S2 Extension DVB-SH DVB - Satellite services to Handhelds DVB-T DVB - Terrestrial EPC Electronic Power Conditioner ETSI European Telecommunications Standards Institute EVM Error Vector Module/Magnitude FS Fixed Satellite FST Fixed Satellite Terminal FSK Frequency-Shift Keying GSO GeoStationary Orbit HPA High Power Amplifier IBO Input Back-Off IEEE Institute of Electrical and Electronics Engineers IMD Inter-Modulation Distortion IMP Inter-Modulation Product IMP3/5 Third-/Fifth-order IMP ISI Inter-Symbol Interference LDMOS Laterally-Diffused Metal Oxide Semiconductor LHCP Left-Hand Circular Polarization LMS Least Mean Square LMSat Land Mobile Satellite LTE Long Term Evolution (3.9G) LTE-A LTE-Advanced (4G) vii LOS Line-Of-Sight MER Modulation Error Ratio MIMO Multiple-Input Multiple-Output MISO Multiple-Input Single-Output MLD Maximum-Likelihood Detection MMSE Minimum Mean Square Error MRC Maximum-Ratio Combining MS Mobile Satellite MSB Mobile Satellite Broadcasting MST Mobile Satellite Terminal MU Multi-User NGSO Non-GeoStationary Orbit NLOS Non LOS OAPS Optimum Additional Phase Shifting OBO Output Back-Off OrbD Orbital Diversity OFDM Orthogonal Frequency-Division Multiplexing OSTBC Orthogonal Space-Time Block Coding PD PreDistortion PSK Phase-Shift Keying PTC Polarization-Time Coding QAM Quadrature Amplitude Modulation QoS Quality of Service QPSK Quadrature Phase-Shift Keying viii RF Radio Frequency RHCP Right-Hand Circular Polarization SatCom Satellite Communications SatD Satellite Diversity SD Spatial Diversity SEL Soft Envelope Limiter SER Symbol Error Ratio SF Space-Frequency SIMO Single-Input Multiple-Output SINR Signal-to-Interference-plus-Noise Ratio SISO Single-Input Single-Output SM Spatial Multiplexing SNR Signal-to-Noise Ratio SRRC Square-Root Raised Cosine SSPA Solid-State Power Amplifier ST Space-Time STBC Space-Time Block Coding STF Space-Time-Frequency STTC Space-Time Trellis Coding TD Total Degradation TR-STBC Time-Reversal STBC TWT Travelling-Wave Tube TWTA TWT Amplifier V-BLAST Vertical-BLAST List of Figures 1.1 Simplified block diagram of a typical radio transmitter. . . . . . 15 1.2 The IEEE 802.11a spectrum mask for the 20 MHz bandwidth signal [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 HPA modeling classification. . . . . . . . . . . . . . . . . . . . . 18 1.4 Typical amplitude and phase distortion characteristics of an HPA (*) .23 1.5 Spectrum regrowth due to nonlinear HPA (*) . . . . . . . . . . . . 25 1.6 Constellation warping due to nonlinear HPA. . . . . . . . . . . . 26 1.7 Nonlinear ISI due to nonlinear HPA. . . . . . . . . . . . . . . . 26 1.8 Simplified MIMO system diagram. . . . . . . . . . . . . . . . . 28 1.9 MIMO technique classification (*) [68]. . . . . . . . . . . . . . . . 29 1.10 Dual-polarized MIMO land mobile satellite system model. . . . . 38 1.11 Simplified MIMO system with nonlinear HPA. . . . . . . . . . . 39 2.1 Characteristic functions of the Cann new model. . . . . . . . . . 47 2.2 Characteristic functions of the Rapp/Cann original model (2.1) compared to that of the Cann new model (2.2). . . . . . . . . . . 48 2.3 Third order (a) and fifth order (b) IMPs created by the Cann new model (2.2). . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 AM-AM functions of the Cann envelope model corresponding to the instantaneous model (2.2). . . . . . . . . . . . . . . . . . 52 2.5 AM-AM (a) and AM-PM (b) functions of typical envelope models. 53 ix x2.6 AM-AM functions of the Rapp model with different sharpnesses. 55 2.7 AM-AM functions of the Cann, Rapp, polynomial, odd-order polynomial and polysine models fitted to the measured data. . . 57 2.8 Two-tone waveform, f1 = 7 [Hz], f2 = 10 [Hz]. . . . . . . . . . . 63 2.9 Polar envelope model block diagram [52]. . . . . . . . . . . . . . 64 2.10 Third order (a) and fifth order (b) IMPs of five models in Figure 2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2.11 Amplitude histograms of two-tone (a) and 1+7-APSK (b) test- ing signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.12 Receive constellations (a) and sp ... f the 1999 IEEE Int. Conf. on Commun., ICC '99, Vancouver, British Columbia, Canada, pp. 1603-1607. [27] Elias P., Feinstein A., and Shannon C. (1956), A note on the maximum flow through a network, IRE Trans. on Inform. Theory, vol. 2, no. 4, pp. 117-119. [28] Eroz M. and Lee L-N. (2014), Method and apparatus for improved high order modulation, US Patent no. 8,674,758. [29] ETSI (2009), Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcast- ing, Interactive Services, News Gathering and other broadband satellite applications, ETSI, EN 302 307. 131 [30] ETSI (2011), Digital Video Broadcasting (DVB); System Specifications for Satellite services to Handheld devices (SH) below 3 GHz, ETSI TS 102 585 V1.2.1. [31] ETSI (2014), Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for Broadcast- ing, Interactive Services, News Gathering and other broadband satellite applications Part II: S2 - Extensions (DVB-S2X), ETSI, EN 302 307-2. [32] Fadhel M. Ghannouchi, Oualid Hammi, Mohamed Helaoui (2015), Be- havioral modeling and predistortion of wideband wireless transmitters, John Wiley & Sons, New York. [33] Farhang-Boroujeny B. (2010), Signal processing techniques for software radios, Chapter 3, Lulu Publishing House. [34] Fernandes C. A. R. (2009), Nonlinear MIMO communication systems: Channel estimation and information recovery using Volterra models, PhD thesis, Universite de Nice Sophia Antipolis, France. [35] Foschini G. J. (1996), Layered space-time architecture for wireless com- munication in a fading environment when using multi-element antennas, Bell Labs Technical J., vol. 1, no. 2, pp. 41-59. [36] Foschini G. J., Michael. J. Gans (1998). On limits of wireless communi- cations in a fading environment when using multiple antennas,Wireless Personal Commun., vol. 6, no. 3, pp. 311-335. [37] Frigyes I., and Horv¡th P. (2008), Application of modern diversity meth- ods in satellite communications, in Proc. of the 26th Int. Commun. Satel- lite Systems Conf. (ICSSC), San Diego, CA, USA, pp. 1-13. 132 [38] Giovanni G. and Marco P. (2018), Microwave electronics, Cambridge University Press, New York. [39] Godara L. C. (1997), Application of antenna arrays to mobile communi- cations: Part I: Performance improvement, feasibility, and system consid- erations; Part II: Beam-forming and direction-of-arrival considerations, Proc. of the IEEE, vol. 85, no. 7/8, pp. 1031-1060, 1195-1245. [40] Goldsmith A. (2005), Wireless communications, Cambridge University Press, New York. [41] Gradshteyn I.S. and Ryzhik I.M. (2015), Table of integrals, series, and products, Academic Press, London, UK. [42] Hampton J. R. (2013), Introduction to MIMO communications, Cam- bridge University Press, New York. [43] Hasan Z., Boostanimehr H., and Bhargava V. K. (2011), Green cellular networks - A survey, some research issues and challenges, IEEE Com- mun. Surveys & Tutorials, vol. 13, no. 4, pp. 524-540. [44] Haupt L. Randy (2010), Antenna arrays - A computational approach, John Wiley & Sons, New Jersey. [45] Haykin S. (1996), Adaptive filter theory, 3rd Edition, Prentice-Hall, Up- per Saddle River, NJ. 07458. [46] Herbert J. Reich, John G. Skalnik, Philip F. Ordung, and Herbert L. Krauss (1952), Microwave principles, D. Van Nostrand Company Inc., New York. 133 [47] Hesham El Gamal, A. Roger Hammons, Jr., Youjian (Eugene) Liu, Michael P. Fitz, and Oscar Y. Takeshita (2003), On the design of space- time and space-frequency codes for MIMO frequency-selective fading channels, IEEE Trans. on Inform. Theory, vol. 49, no.9, pp. 2277-2292. [48] Hofmann C., Storek K.-U., Schwarz R. T., Knopp A. (2016), Spatial MIMO over satellite: A proof of concept, in Proc. of the 2016 IEEE Int. Conf. on Communication, ICC16, Kuala Lumpur, Malaysia. [49] Horv¡th P., and Frigyes I. (2006), Application of the 3D polarization concept in satellite MIMO systems, in Proc. of the 49th Annual IEEE Global Telecommun. Conf. (GLOBECOM '06), San Francisco, California, USA. [50] Horv¡th P., Karagiannidis K. G., King R. P., Stavrou S., and Frigyes I. (2007), Investigations in satellite MIMO channel modelling: Accent on polarization, EURASIP J. on Wireless Commun. and Networking, vol. 2007, Article ID 98942, pp. 1-10. [51] Jacovitti G., and Neri A. (2000), Multiresolution circular harmonic de- composition, IEEE Trans. Signal Processing, vol. 48, no. 11, pp. 3242- 3247. [52] Jeruchim, M., Balaban, P., and Shanmugan, K. (2000), Simulation of communication systems, Plenum Press, Berlin. [53] Jingon Joung, Chin Keong Ho, Koichi Adachi, and Sumei Sun (2014), A survey on power-amplifier-centric techniques for spectrum and energy efficient wireless communications, IEEE Commun. Surveys & Tutorials, vol. 17, no. 1, pp. 315-333. 134 [54] John Proakis, and Masoud Salehi (2008), Digital communications, 5th Edition, McGraw-Hill Education, New York. [55] John L.B. Walker (2012), Handbook of RF and microwave power ampli- fiers, Cambridge University Press, New York. [56] Kay, S. M. (1993), Fundamentals of statistical signal processing: Estima- tion theory, Prentice Hall, New Jersey. [57] Kelly Mekechuk, Wan-Jong Kim, Shawn P. Stapleton, and Jong Heon Kim (2004), Linearizing power amplifiers using digital predistortion, EDA tools and test hardware, High Frequency Electronics, Summit Tech- nical Media, LLC, Apr04/HFE0404_Stapleton.pdf. [58] King P.R., Evans B.G., and Stavrou S. (2005), Physical-statistical model for the land mobile-satellite channel applied to satellite/HAP MIMO, in Proc. of the 11th European Wireless Conf., Nicosia, Cyprus, pp. 198-204. [59] King R.P., Horv¡th P., P²rez-Font¡n F., Frigyes I., and Stavrou S. (2005), Satellite channel impairment mitigation by diversity techniques, in Proc. 2005 IST Mobile and Wireless Communication Summit, Dresden, Germany, pp 1-5. [60] Lei Guan, and Anding Zhu (2014), Green communications: Digital pre- distortion for wideband RF power amplifiers, IEEE Microwave Mag., vol. 15, no. 7, pp. 84-99. [61] Ling Fuyun (2017), Synchronization in digital communication systems, Cambridge University Press, Cambridge, UK. 135 [62] Litva, J. and Lo, T. K-Y (1996), Digital beamforming in wireless com- munications, Artech House, Norwood MA. [63] Liu Z., Giannakis G. B., Barbarossa S., and Scaglione A. (2001), Trans- mit antennae space-time block coding for generalized OFDM in the pres- ence of unknown multipath, IEEE J. Select. Areas Commun., vol. 19, no. 7, pp. 1352-1364. [64] Loyka S.L., Mosig J.R. (2000), New behavioral-level simulation tech- nique for RF/microwave applications. Part I: Basic concepts, Int. J. of RF and Microwave Computer-Aided Engineering, vol. 10, no. 4, pp. 221-237. [65] Loyka S.L. (2000), On the use of Cann' model for nonlinear behavioral- level simulation, IEEE Trans. on Veh. Tech., vol. 49, no. 5, pp. 1982- 1985. [66] Mietzner J., Hoeher P.A. , and M. Sandell (2003) Compatible improve- ment of the GSM/EDGE system by means of space-time coding tech- niques, IEEE Trans. on Wireless Commun., vol. 2, no. 4, pp. 690-702. [67] Middleton D. (2012), Non-Gaussian Statistical Communication Theory, John Wiley & Sons, Inc., Hoboken, New Jersey. [68] Mietzner J., et al. (2009), Multiple-antenna techniques for wireless com- munications - a comprehensive literature survey, IEEE Commun. Sur- veys & Tutorials, vol. 11, no. 2, pp. 87-105. [69] Minkoff J. (1985), The role of AM-to-PM conversion in memoryless non- linear, IEEE Trans. on Wireless Commun., vol. 33, no. 2, pp. 139-144. 136 [70] Naguib A. F., Seshadri N., and Calderbank A. R. (2000), Increasing data rate over wireless channels, IEEE Signal Processing Mag., vol. 17, no. 3, pp. 76-92. [71] Nguyen Tat Nam, and Nguyen Quoc Binh (2015), Using optimal ad- ditional phase shift to reduce the nonlinear distortion effects in MIMO STBC systems, in Proc. The 2015 National Conf. on Elect., Commun. and Inform. Technol. - REV-ECIT 2015, Ho Chi Minh city, Vietnam, pp. 303-308. [72] O'Droma M., Meza S., and Lei Y. (2009), New modified Saleh models for memoryless nonlinear power amplifier behavioural modelling, IEEE Commun. Lett., vol. 13, no. 6, pp 399-401. [73] Oussama B. Belkacem, Mohamed L. Ammari, Rafik Zayani and Ridha Bouallegue. (2013), Capacity analysis of MIMO-STBC system in the presence of nonlinear distortion and neural network compensator, Proc. of The Tenth Int. Symp. on Wireless Commun. Systems (ISWCS), Ilme- nau, Germany, pp. 1-5. [74] Oussama B. Belkacem, Mohamed L. Ammari, Rafik Zayani and Ridha Bouallegue (2014), On the effect of neural network compensation on MIMO-STBC systems in the presence of HPA nonlinearity, Trans. on Emerging Telecommun. Technol., vol. 26 no. 9, pp. 1119-1130. [75] Pantelis-Daniel A., Konstantinos L., Massimo B., Athanasios P., Panay- otis C., Riccardo D. G. (2011), MIMO over satellite: A review, IEEE Communication Surveys & Tutorials, vol. 13, no. 1, pp. 27-51. 137 [76] Peter Almers, Fredrik Tufvesson, and Andreas F. Molisch (2006), Key- hole effect in MIMO wireless channels: Measurements and theory, in IEEE Trans. on Wireless Commun., vol. 5, no. 12, pp. 3596-3604. [77] Perez-Neira A, et al. (2011), MIMO channel modeling and transmis- sion techniques for multi-satellite and hybrid satellite-terrestrial mobile networks, Elsevier's Physical Commun., vol. 4, no. 2, pp. 127-139. [78] Petrov A., and Sergienko A. (2012), Analytical evaluation of perfor- mance for harmonic and biharmonic methods of blind phase offset esti- mation, in Proc. 13th IEEE Int. Symp. on Problems of Redundancy in Inform. and Control Systems, Saint-Petersburg, pp. 57-61. [79] Petrov A., and Sergienko A. (2013), Optimal blind biharmonic feedfor- ward phase offset estimation for QAM signals in Proc. 2013 IEEE Int. Conf. on Commun. (ICC), Budapest Hungary, pp. 4756 - 4760. [80] Pupolin S., and Greenstein L.J. (1987), Performance analysis of digi- tal radio links with nonlinear transmit amplifiers, IEEE J. Sel. Areas Commun., vol. SAC-5, no. 3, pp. 535-546. [81] Qi J., and Assa S. (2010), Analysis and compensation of power amplifier nonlinearity in MIMO transmit diversity systems, IEEE Trans. on Veh. Technol., vol. 59, no. 6, pp. 2921 - 2931. [82] Rapp Christoph (1991), Effects of HPA-nonlinearity on a 4-DPSK/ OFDM-signal for a digital sound broadcasting signal, Proc. of European Conf. on Satellite Commun., pp. 179-184, Liege, Belgium. 138 [83] Rice F., Cowley B., Moran B., and Rice M. (2001), Cramer-Rao lower bounds for QAM phase and frequency estimation, IEEE Trans. Com- mun., vol. 49, no. 9, pp. 1582-1591. [84] Saleh A. A. M. (1981) Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers, IEEE Trans. on Commun., vol. 29, no. 11, pp. 1715-1720. [85] Seshadri N. and Winters J. H. (1993), Two signaling schemes for improv- ing the error performance of Frequency-Division-Duplex (FDD) transmis- sion systems using transmitter antenna diversity, in Proc. of the 1993 IEEE Veh. Technol. Conf. (VTC), Secaucus, New Jersey, pp. 508-511. [86] Shaw, C. and Rice, M. (2009), Turbo-coded APSK for aeronautical telemetry, in Proc. of IEEE Int. Conf. on Waveform Diversity and De- sign, Orlando FL, USA, pp. 317-321. [87] Sheng Chen (2011), An efficient predistorter design of compensating nonlinear memory high power amplifier, IEEE Trans. Broadcasting, vol. 57, no. 4, pp. 856-865. [88] Siljak D. Dragoslav (1969), Nonlinear systems: Parameter analysis and design, John Wiley & Sons, New York. [89] Tarokh V., Seshadri N., and Calderbank A. R. (1998), Space-time codes for high data rate wireless communication: Performance criterion and code construction, IEEE Trans. on Inform. Theory, vol. 44, no.2, pp. 744-765. 139 [90] Tarokh V., Jafarkhani H., and Calderbank A. R. (1999) Space-time block codes from orthogonal designs, IEEE Trans. on Inform. Theory, vol. 45, no. 5, pp. 1456-1467. [91] Teikari Ilari, Digital predistortion linearization methods for RF power amplifiers, PhD thesis, Helsinki University of Technol., Espoo, Finland, 2008. [92] Telatar E. (1999), Capacity of multi-antenna Gaussian channels, Euro- pean Trans. on Telecommun., vol. 10, no. 6, pp. 585-596. [93] Tulino A. M., Lozano A., and Verdu S. (2005), Impact of antenna corre- lation on the capacity of multiantenna channels, IEEE Trans. on Inform. Theory, vol. 51, no. 7, pp. 2491-2509. [94] Tuyen T. D., Tan T. D., Vu T. A., and Tue H. H. (2009), Performance of STBC MIMO-OFDM using pilot-aided channel estimation and adaptive pre-distortion, in Proc. Int. Conf. on Advanced Technol. for Commun. - ATC 2009, Hai Phong, Vietnam, pp. 104-107. [95] Van Nee, R. and Prasad, R. (2000), OFDM for wireless multimedia com- munications, Artech House, Norwood MA. [96] Vasjanov A., Barzdenas V. (2018), A review of advanced CMOS RF power amplifier architecture trends for low power 5G wireless networks, Electronics 7, no. 11: 271. https://doi.org/10.3390/electronics7110271. [97] Wasaff H.D., Adaptive pre-distortion for nonlinear high power amplifiers in OFDM systems, PhD thesis, The Polytechnic University of Catalonia, Catalonia, Spain, 2004. 140 [98] Weisstein, Eric W. Secant Method. From MathWorldA Wolfram web resource [99] Weisstein, Eric W., Newton's Method. From MathWorldA Wolfram web resource [100] Whitney Q. Lohmeyer, Raichelle J. Aniceto, and Kerri L. Cahoy (2016), Communication satellite power amplifiers: Current and future SSPA and TWTA technologies, Int. J. of Satellite Comm. and Networking, vol. 34, no. 2 pp. 95-113. [101] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery (2007), Numerical recipes - The art of scientific computing, Third edition, Cambridge University Press, New York. [102] Wittneben A. (1991), Basestation modulation diversity for digital simulcast, in 1991 Proc. of the 41st Veh. Technol. Conf. - Gateway to the Future Technol. in Motion, pp. 848-853. [103] Wolniansky P. W., Foschini G. J., Golden G. D., and Valenzuela R. (1998), V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel, in Proc. of the 1998 URSI Int. Symp. on Signals, Systems, and Electronics, pp. 295-300. [104] Xiaochen Lin, Minglu Jin, and Aifei Liu (2007), An improved adaptive digital predistortion using discrete Newton's method, in Proc. 2007 Int. Conf. on Wireless Communication, Networking and Mobile Computing, Shanghai, pp. 834-837. 141 [105] Zheng, L. and Tse, D. (2003), Diversity and multiplexing: A funda- mental tradeoff in multiple-antenna channels, IEEE Trans. on Inform. Theory, vol. 49, no. 5, pp. 1073-1096.
File đính kèm:
- nonlinear_distortions_and_countermeasures_for_performance_im.pdf
- Thong tin ve LA dua len mang_Thanh.doc
- TomTatLA_Thanh.pdf