Tóm tắt Luận án Nghiên cứu ảnh hưởng của thông số công nghệ gia công cơ - Nhiệt đến tổ chức và cơ tính của thép song pha được luyện từ sắt xốp
Hiện nay, công nghệ hoàn nguyên trực tiếp (sắt xốp - DRI) đang được phát
triển, đã sản xuất hàng trăm triệu tấn thép hợp kim chất lượng cao mỗi năm.
Nhờ sử dụng nguyên liệu sắt xốp và tinh luyện ngoài lò, cùng với công nghệ cơ
- nhiệt đã nâng cấp nhóm thép hợp kim thấp độ bền cao (HSLA) nhóm CMnSi
trở thành một nhóm thép mới, thép độ bền cao tiên tiến (AHSS), trong đó có
thép song pha (DP). Thép có cơ tính đặc thù vừa có độ bền cao, vừa có tính dẻo
tốt, được dùng để chế tạo các kết cấu thép, khung dầm xe ô tô, các chi tiết cơ
khí tạo nên một thế hệ sản phẩm có độ bền cao hơn, kết cấu nhẹ hơn và giá
thành hạ hơn.
Để đáp ứng cho quốc phòng tự sản xuất vỏ động cơ R122 với yêu cầu chiều
dài ống dài hơn có thể chịu được áp lực cao hơn để bắn được tầm xa hơn, cần giải
quyết theo hướng sử dụng thép DP có cơ tính đặc biệt vừa cho độ bền cao hơn khi
sử dụng và vừa có độ dẻo lớn hơn khi gia công biến dạng, nhờ hiệu ứng song pha,
thay thế mác thép thông thường
Tóm tắt nội dung tài liệu: Tóm tắt Luận án Nghiên cứu ảnh hưởng của thông số công nghệ gia công cơ - Nhiệt đến tổ chức và cơ tính của thép song pha được luyện từ sắt xốp
BỘ QUỐC PHÒNG HỌC VIỆN KỸ THUẬT QUÂN SỰ TRẦN CÔNG THỨC NGHIÊN CỨU ẢNH HƯỞNG CỦA THÔNG SỐ CÔNG NGHỆ GIA CÔNG CƠ - NHIỆT ĐẾN TỔ CHỨC VÀ CƠ TÍNH CỦA THÉP SONG PHA ĐƯỢC LUYỆN TỪ SẮT XỐP Chuyên ngành: Kỹ thuật cơ khí Mã số: 9 52 01 03 TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT HÀ NỘI - 2018 CÔNG TRÌNH ĐƯỢC HOÀN THÀNH TẠI HỌC VIỆN KỸ THUẬT QUÂN SỰ - BỘ QUỐC PHÒNG Người hướng dẫn khoa học: 1. PGS.TS Đinh Bá Trụ 2. PGS.TS Nguyễn Trường An Phản biện 1: PGS.TS Trần Ngọc Thanh Viện Tên lửa - Viện Khoa học và Công nghệ Quân sự Phản biện 2: PGS.TS Đào Minh Ngừng Viện KHKT vật liệu - Đại học Bách khoa Hà Nội Phản biện 3: TS Đào Văn Lưu Trung tâm Công nghệ - Học viện Kỹ thuật Quân sự Luận án được bảo vệ tại Hội đồng đánh giá luận án cấp Học viện theo quyết định số ./, ngày ..tháng .năm 2018 của Giám đốc Học viện Kỹ thuật Quân sự, họp tại Học viện Kỹ thuật Quân sự vào hồi giờ ngày tháng .2018. Có thể tìm hiểu luận án tại: - Thư viện Học viện Kỹ thuật Quân sự - Thư viện Quốc gia 1 MỞ ĐẦU 1. Tính cấp thiết của đề tài Hiện nay, công nghệ hoàn nguyên trực tiếp (sắt xốp - DRI) đang được phát triển, đã sản xuất hàng trăm triệu tấn thép hợp kim chất lượng cao mỗi năm. Nhờ sử dụng nguyên liệu sắt xốp và tinh luyện ngoài lò, cùng với công nghệ cơ - nhiệt đã nâng cấp nhóm thép hợp kim thấp độ bền cao (HSLA) nhóm CMnSi trở thành một nhóm thép mới, thép độ bền cao tiên tiến (AHSS), trong đó có thép song pha (DP). Thép có cơ tính đặc thù vừa có độ bền cao, vừa có tính dẻo tốt, được dùng để chế tạo các kết cấu thép, khung dầm xe ô tô, các chi tiết cơ khí tạo nên một thế hệ sản phẩm có độ bền cao hơn, kết cấu nhẹ hơn và giá thành hạ hơn. Để đáp ứng cho quốc phòng tự sản xuất vỏ động cơ R122 với yêu cầu chiều dài ống dài hơn có thể chịu được áp lực cao hơn để bắn được tầm xa hơn, cần giải quyết theo hướng sử dụng thép DP có cơ tính đặc biệt vừa cho độ bền cao hơn khi sử dụng và vừa có độ dẻo lớn hơn khi gia công biến dạng, nhờ hiệu ứng song pha, thay thế mác thép thông thường. 2. Mục tiêu của luận án Xác lập các quy luật quan hệ giữa 3 TSCN: (nhiệt độ nung, thời gian giữ nhiệt và tốc độ nguội) với tổ chức tế vi (tổ chức 2 pha F và M, có độ lớn hạt cấp siêu mịn, tỷ phần pha nhất định) và từ đó quyết định đến chỉ tiêu cơ tính; nhằm làm cơ sở thiết lập các quy trình công nghệ cơ nhiệt sản xuất phôi thép dập vỏ động cơ R122, từ thép được luyện bằng sắt xốp MIREX, qua biến dạng và xử lý cơ - nhiệt, tương đương tiêu chuẩn ASTM. 3. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu: Nghiên cứu các chỉ tiêu cơ tính của 1 mác thép CMnSi, được tạo nên bằng hiệu ứng song pha nhờ công nghệ cơ nhiệt đặc biệt đáp ứng yêu cầu làm phôi dập vỏ động cơ R122. Phạm vi nghiên cứu: Chọn một mác thép DP đáp ứng yêu cầu, luyện từ nguyên liệu sắt xốp, được rèn với tỷ số rèn cao đủ làm nhỏ hạt. Trọng tâm nghiên cứu tác dụng của các thông số xử lý nhiệt đến các chỉ tiêu cơ tính thông qua hình thành tổ chức tạo nên hiệu ứng song pha. 4. Phương pháp nghiên cứu Lấy thực nghiệm khoa học làm cơ sở, các số liệu đo đạc được từ các mẫu thử làm bằng thép DP, qua rèn và xử lý nhiệt theo quy trình đặc biệt. Sử dụng phương 2 pháp quy hoạch thực nghiệm (QHTN) để xác định số số liệu và xử lý kết quả thực nghiệm, thiết lập hàm hồi quy và các biểu đồ đồng mức, từ đó phân tích xác lập quy luật quan hệ 3 TSCN đến các chỉ tiêu cơ tính thép DP. 5. Ý nghĩa khoa học và thực tiễn Luận án đã chứng minh mối quan hệ giữa các TSCN với cơ tính của thép DP vừa bền vừa dẻo nhờ tạo nên tổ chức 2 pha F và M, độ lớn hạt siêu mịn và tỷ phần M từ 15 - 30%; nhờ đó thép vừa có độ bền cao khi sử dụng và tính dẻo tốt khi gia công biến dạng. Các quy luật được Luận án đưa ra đã được nghiệm chứng có thể sử dụng làm cơ sở thiết lập các quy trình công nghệ tạo phôi thép song pha được luyện từ sắt xốp và dùng để dập vỏ động cơ R122. Chương 1. TỔNG QUAN VỀ THÉP AHSS - THÉP DP - SẮT XỐP 1.1. Một số khái niệm 1.1.1. Thép kết cấu hợp kim: Là các mác thép dùng để chế tạo các kết cấu thép và các chi tiết máy. 1.1.2. Thép độ bền cao tiên tiến: Là nhóm thép được phát triển từ nhóm thép HSLA, có hàm lượng cacbon thấp và trung bình được hợp kim hóa bằng Mn, Si; thép được luyện từ sắt hoàn nguyên trực tiếp DRI có độ sạch tạp chất cao, được xử lý cơ nhiệt đặc biệt để có tổ chức 2 hoặc nhiều pha, các hạt pha nhỏ mịn và có tỷ phần thể tích các pha nhất định. Nhờ đó thép có các chỉ tiêu độ bền cao và tính dẻo tốt. 1.1.3. Thép song pha: Thép DP thuộc nhóm độ bền cao tiên tiến (AHSS). 1.2. Đặc điểm thành phần - tổ chức pha - cơ tính thép AHSS 1.2.1. Đặc điểm thành phần và tổ chức của thép AHSS Thép AHSS bao gồm: Thép song pha DP (có pha F và M); thép dẻo do chuyển biến TRIP (có pha F, B, M và Ô dư); thép đa pha CP (có pha F, B, M, Ô), thép mactenxit MS (có pha M). 1.2.2. Đặc điểm cơ tính của nhóm thép AHSS Hình 1.1: Ba thế hệ thép AHSS Hình 1.4: Quan hệ n % của thép DP 3 Thép AHSS so với thép HSLA: có độ bền siêu cao từ 700MPa - 1700MPa, độ giãn dài từ 10 - 40%, Nếu cùng giới hạn chảy 350MPa thép AHSS có độ bền cao đến 600MPa, độ giãn dài 30%. Cùng độ giãn dài 20% thép DP có độ bền đến 1000MPa, trong khi đó thép HSLA là 700MPa 1.3. Đặc điểm thành phần - tổ chức pha và cơ tính của thép DP 1.3.1. Đặc điểm thành phần thép DP Thép DP có thành phần: 0,06 0,15C%; 1 1,7Mn%; 0,6 1Si%, 0,2 0,5Cr%; < 0,025P%, < 0,025S%, thấp tạp chất phi kim và khí thấp. 1.3.2. Đặc điểm tổ chức thép DP - Thép có tổ chức hai pha F và M; - Độ lớn hạt siêu mịn, dF < 20µm, dM < 10µm; - Tỷ phần thể tích các VM = 15 - 30%, - Pha M nằm xen kẽ giữa phân giới các hạt F làm tác nhân hóa bền. Hình 1.13: Tổ chức của thép DP 1.3.3. Đặc điểm cơ tính thép DP: Thép vừa có độ bền cao vừa có tính dẻo tốt Hình 1.16.: Biểu đồ so sánh ứng suất - biến dạng của thép DP và HSLA Bảng 1.5: Tính dị hướng của thép DP Mác thép Sự định hướng Re (MPa) Rm (MPa) A (%) DP600 Chiều dọc 370,9 630,1 23,2 Chiều ngang 379,6 640,4 22,6 DP780 Chiều dọc 468,8 799,1 18,5 Chiều ngang 475,8 796,9 17,5 DP980 Chiều dọc 585,5 1088,5 11,3 Chiều ngang 642,9 1087,0 8,6 Độ bền có giá trị từ 450 đến trên 1180MPa, Re từ 210 800MPa; A% từ 12 34%; n từ 0,09 1,21; tỷ số Rm/Re là 1,71; PSE tới 20000MPa%. 1.3.4. Đặc điểm công nghệ sản xuất thép DP của thế giới - Công nghệ 1: Cán nóng qua vùng nhiệt độ 2 pha → làm nguội nhanh. - Công nghệ 2: Cán nguội → Nung lên vùng 2 pha → làm nguội nhanh Hình 1.23: Sơ đồ sản xuất thép DP 1.4. Đặc điểm sắt xốp - nguồn nguyên liệu sản xuất thép AHSS Bảng 1.7: Thành phần hóa học một số loại sắt xốp do Việt Nam sản xuất Sắt xốp MIREX Tổng Fe, % Fe KL, % C, % P, % S, % khác d (mm) Sắt xốp ép viên 90÷92 80÷82 1,0÷1,2 0,03max 0,03max Còn lại 40 Sắt xốp cục 92÷96 90÷92 0,2÷0,3 0,025 0,025 Còn lại 12÷34 4 1.5. Kết luận chương 1 1. Thép DP một trong các nhóm thép AHSS, có các đặc trưng tiêu biểu: Có hai pha F và M với tỷ phần thể tích mactenxit 15 30%; độ lớn hạt dF < 20m, dM < 10m. Được luyện từ sắt xốp, gia công biến dạng, được nung trong vùng hai pha và nguội nhanh. Thép có độ bền và độ giãn dài cao hơn hẳn thép HSLA cùng thành phần cơ bản. Được sử dụng làm các kết cấu thép và các chi tiết máy. 2. Luận án cần tập trung nghiên cứu ảnh hưởng của 3 TSCN (nhiệt độ nung, thời gian giữ nhiệt và tốc độ nguội) đến độ bền và tính dẻo của thép, trên cơ sở hình thành tổ chức đặc thù tạo nên hiệu ứng song pha. Chương 2. CƠ SỞ LÝ THUYẾT VỀ TỔ CHỨC VÀ CƠ TÍNH CỦA THÉP DP 2.1. Đặc điểm chỉ tiêu bền và dẻo đặc thù của thép DP Thép DP vừa có độ bền cao vừa có tính dẻo cao do thép có tổ chức đặc thù tạo nên hiệu ứng song pha. 2.2. Nguyên lý cộng pha ứng dụng trong thép DP 2.2.1. Cơ sở lý thuyết cộng pha Độ bền và độ dẻo của thép DP phụ thuộc vào tổng của tích độ bền (độ dẻo) của từng pha với tỷ phần thể tích của M: = m .Vm + f.VF = m.Vm + f.(1-Vm) (2.3) = m.Vm. + f.(1-Vm) (2.4) 2.2.2. Độ bền và độ giãn dài pha F và M quan hệ với hàm lượng cacbon Giới hạn bền và độ giãn dài của pha F, M phụ thuộc hàm lượng %C trong chúng. 2.2.3. Ảnh hưởng của tỷ phần thể tích F và M: Độ bền và độ dẻo của thép DP phụ thuộc vào tỷ phần thể tích của chúng (hình 2.6) 2.3. Cơ chế hóa bền do lệch và sự hãm lệch trong thép DP 2.3.1. Cơ chế hóa bền do lệch: Độ bền của thép DP phụ thuộc vào sự chuyển động của lệch nằm trong pha F khi chịu tác dụng của ứng suất tiếp theo công thức (2.5) 𝜏𝐹𝑅 = 𝐺𝑏 𝑙 (2.5) Theo Taylor ứng suất chảy thực σ(ε) phụ thuộc mật độ lệch ρ(ε) σ(ε) = σi0+α.G.b.√ρ(ε) ; y = i + d = i + α.G.b√ (2.6) hoặc y = i + α.G.b.√ 0+K. m (2.7) Theo cơ chế nguồn lệch F-R, đường lệch chuyển động khi gặp các tác nhân cản trở (các pha phân tán, hoặc xen kẽ) chúng tạo thành các vòng tập trung lệch, 5 làm tăng bền cho vật liệu. a) b) Hình 2.5: Quan hệ Rm - Re(a) và A%(b) với hàm lượng %C trong M a) b) Hình 2.6: Quan hệ Rm - Re(a) và A% (b) với Vm của thép DP a) (b) (e) K A B (a) (f) (g) (c) (d) b) Hình 2.9: Sơ đồ nguồn F-R (a) và sự cản trở lệch (b) 2.3.2. Các cơ chế hãm lệch trong thép DP: Có 3 cơ chế hãm lệch - Hóa bền do sự hòa tan của NTHK C, N, Mn, Si - Hóa bền bằng các pha phân tán: các cacbit TiC, NbC - Hóa bền bằng chuyển biến pha tạo pha M rắn xen kẽ Hình 2.11: Ba cơ chế tăng bền của thép DP Hình 2.12: Tác dụng hóa bền của NTHK lên ứng suất chảy Hình 2.13: Chuyển biến tạo pha rắn Thép DP có độ bền cao, tính dẻo tốt nhờ sự cản trở lệch của các hạt M nhỏ siêu mịn, nằm xen kẽ trên nền pha F nhỏ mịn. Khi ngoại lực tác động lệch được 6 hình thành trong nhiều hạt F và khi chuyển động chúng bị các phân giới hạt và hạt M nhỏ mịn cản trở từ đó làm thép vừa có độ bền cao vừa có tính dẻo tốt. Như vậy, điều khiển nhiệt độ nung trong vùng 2 pha và thời gian giữ nhiệt, để khống chế độ hòa tan của cacbon, độ lớn hạt F, M và tỷ phần M, đồng thời nguội nhanh để tạo sự phân tán của M trên nền F (hình 2.13). 2.4. Lý thuyết hóa bền thép DP bằng hạt F và M nhỏ 2.4.1. Cơ sở lý thuyết hóa bền bằng hạt nhỏ thép DP Thép có hiệu ứng song pha nhờ tạo được kích thước các hạt F, M nhỏ mịn, nên độ bền và độ dẻo của thép DP có thể giải thích bằng lý thuyết hóa bền hạt nhỏ Hall-Petch (xem công thức 2.10 và hình 2.14; 2.15) 2 1− += kdoch (2.10) Hình 2.14: Quan hệ Rm và dF Hình 2.15: Quan hệ R - với dF Hình 2.16: Các dạng truyền chuyển động của lệch qua phân giới hạt Khi độ lớn hạt F < 20m, sẽ có nhiều hạt biến dạng và lệch được truyền hạt nọ sang hạt kia qua phân giới hạt. 2.4.2. Một số giải pháp làm nhỏ hạt trong thép DP 1) Làm nhỏ hạt phôi ban đầu nhờ biến dạng dẻo với tỷ số biến dạng cao, khống chế nhiệt độ dừng rèn và thông số nhiệt khi làm nguội. 2) Làm nhỏ hạt bằng hợp kim hóa: Sử dụng các nguyên tố vi lượng. 3) Làm nhỏ hạt bằng công nghệ nung ở nhiệt 2 pha giữa Ac1 và Ac3, giữ nhiệt và làm nguội nhanh. 2.5. Nhiệt động học chuyển biến tổ chức pha F và M 2.5.1. Ảnh hưởng nhiệt độ nung 7 Khống chế nhiệt độ nung giữa vùng 2 pha Ac1 và Ac3 để điều khiển tỷ phần pha F, Ô và độ lớn của chúng; sau khi nguội nhanh tỷ phần và độ lớn M được bảo đảm do quá trình chuyển biến Ô thành M. Hình 2.20: Giản đồ quan hệ nhiệt độ nung và tỷ phần pha 2.5.2. Ảnh hưởng của thời gian giữ nhiệt: Thời gian giữ nhiệt quyết định sự hòa tan của các nguyên tố hợp kim, độ lớn hạt F và Ô. a) b) a) b) Hình 2.23: Quá trình hòa tan(a) và đồng đều ôstenit(b) Hình 2.24: Quan hệ VF với (a), T (b) a) b) Hình 2.25: Động học ôstenit hóa đẳng nhiệt 2.5.3. Ảnh hưởng tốc độ nguội: Tốc độ nguội phải lớn hơn tốc độ nguội tới hạn để bảo đảm sự chuyển biến Ô thành M. 2.6. Kết luận chương 2 1. Thép DP hóa bền theo luật cộng pha. 2. Thép DP hóa bền theo cơ chế biến dạng của lệch và sự hãm lệch. Đặc thù tổ chức thép DP tạo nên pha M nhỏ mịn làm tác nhân hãm lệch. 3. Thép DP hóa bền theo cơ chế hạt nhỏ Hall-Petch. 4. Để tạo hiệu ứng hóa bền cho thép DP phải luyện thép cho độ sạch cao, biến dạng phôi với tỷ số rèn lớn, nung ở vùng 2 pha Ac1 và Ac3 và nguội nhanh. Chương 3. THỰC NGHIỆM KHOA HỌC 3.1. Lưu đồ thực nghiệm và các thiết bị thí nghiệm Thực nghiệm khoa học được tiến hành theo lưu đồ hình 3.1. Thép được luyện từ sắt xốp Mirex, tinh luyện trong lò WIM. Phôi thép 250 được rèn xuống 14 dùng để làm mẫu kim tương và thử kéo. Hình 3.1: Lưu đồ thực nghiệm 3.2. Thực nghiệm xác định thuộc tính nhiệt động 3.2.1. Thành phần thép nghiên cứu (luyện theo ASTM) 8 Bảng 3.1: Thành phần hóa học mác thép sau khi nấu và tinh luyện C Si Mn P S Cr Cu Co Mo V Ni Ti 0,097 0,886 1,241 0,024 0,012 0,364 0,17 0,007 0,012 0,002 0.002 0,009 3.2.2. Thuộc tính nhiệt động của mác thép DP nghiên cứu Ac1 = 7230C và Ac3 = 8780C. 3.2.3. Xác định tổ chức pha của thép bằng kính hiển vi quang học Thí nghiệm phân tích tổ chức F, M, xác định độ lớn hạt và tỷ phần pha được tiến hành tại Trung tâm đo lường Viện công nghệ, Bộ quốc phòng 3.2.4. Xác định các mức biến đổi của TSCN xử lý nhiệt - Nhiệt độ nung: 740 7800C, - Thời gian giữ nhiệt: 10 20phút, - Tốc độ nguội: (trong dầu 500C/s nước 1000C/s và nước muối 10%: 1500C/s) Hình 3.9: Chu trình xử lý nhiệt thực nghiệm 3.3. Xác định các đặc trưng cơ tính của thép: Thí nghiệm thử kéo được tiến hành tại Trung tâm đo lường Viện công nghệ, Bộ quốc phòng. 3.4. Phương pháp xử lý số liệu thực nghiệm 3.4.1. Phương pháp quy hoạch thực nghiệm Bảng 3.5: Bảng kết quả thực nghiệm N0 VM (%) dM (µm) dF (µm) Rm (MPa) Re (MPa) A (%) Rm/Re (MPa) Z (%) RmxA (MPa%) n 1 12,4 7,6 11,4 624,6 398,8 24,5 1,566 56,1 15303 0,19 2 17,4 8,6 13,3 669,9 461,5 24,0 1,452 48,4 16078 0,18 3 20,5 9,1 13,7 691,5 444,2 22,7 1,557 52,1 15697 0,19 4 25,3 10,1 16,8 704,7 487,9 24,3 1,444 46,2 17124 0,17 5 14,2 6,8 10,4 631,6 428,3 25,4 1,475 66,7 16043 0,17 6 28,6 7,9 15,2 765,6 494,2 23,5 1,549 46,4 17992 0,17 7 18,2 8,4 11,6 735,9 488,7 20,0 1,506 46,5 14718 0,15 8 31,8 9,6 15,8 819,3 530,6 17,0 1,544 42,2 13928 0,16 9 18,8 7,7 11,4 639,7 410,2 20,8 1,560 55,3 13306 0,18 10 31,3 9,1 14,2 706,3 452,8 23,7 1,560 51,5 16739 0,18 11 23,5 7,6 12,3 671,5 451,0 19,9 1,489 52,5 13363 0,19 12 26,3 9,4 14,3 763,6 487,6 17,6 1,566 41,0 13439 0,18 13 18,8 8,9 14,6 638,8 419,7 20,1 1,522 47,6 12859 0,17 14 23,7 8,6 13,1 688,4 452,2 22,6 1,522 47,3 15558 0,17 15 25,6 8,7 13,6 685,2 456,9 18,6 1,5 48,6 12721 0,17 Bảng 3.6: Bảng giá trị, độ tin cậy của các đặc trưng tổ chức và cơ tính STT Tên đặc trưng tổ chức và cơ tính của thép nghiên cứu Các giá trị Độ tin cậy sperman Max Min 1 Độ lớn hạt ferit (dF), µm 16,8 10,4 0,95 2 Độ lớn hạt mactenxit (dM), µm 10,1 6,8 0,94 3 Tỷ phần Mactenxit (VM), % 31,8 12,4 0,95 4 Giới hạn bền ... c n g h iệ m k iể m c h ứ n g : R m = 8 2 4 ,5 M P a, T = 7 8 0 0 C , = 2 0 p h ú t, v n = 1 5 0 0 C /s ; 15 4.2.2. Quan hệ thông số công nghệ với giới hạn chảy H ìn h 4 .3 0 : Ả n h h ư ở n g c ủ a t h ô n g s ố c ô n g n g h ệ đ ến g iớ i h ạ n c h ả y - V ù n g T S C N t ố i ư u c h o g iớ i h ạn c h ảy t h ấp n h ất R e = 4 0 0 4 4 0 M P a, T = 7 3 0 7 5 0 0 C , = 1 3 1 5 p h ú t, v n = 4 0 5 0 0 C /s . - G iớ i h ạn c h ảy l ớ n n h ất R e = 5 0 0 5 2 0 M P a, T = 7 70 78 00 C , = 1 8 2 0 ph út , v n = 1 50 1 60 0 C /s . - T h eo h àm h ồ i q u y R em ax = 5 3 5 M P a, T = 7 8 0 0 C , = 2 0 p h ú t, v n = 1 5 0 0 C /s . R em in = 4 1 3 M P a, T = 7 4 0 0 C , = 1 0 p h ú t, v n = 5 0 0 C /s ; 16 4.3. Nghiên cứu ảnh hưởng của TSCN đến các chỉ tiêu dẻo 4.3.1. Quan hệ giữa hệ số hóa bền (Rm/Re) với các TSCN H ìn h 4 .3 3 : Ả n h h ư ở n g c ủ a t h ô n g s ố c ô n g n g h ệ đ ến h ệ số h ó a b ền - V ù n g T S C N t ố I ư u c h o h ệ số h ó a b ền l ớ n n h ất R m /R e > 1 ,5 4 . + V ù n g 1 : T = 7 3 0 7 4 0 0 C , v n < 1 0 0 0 C /s v à + V ù n g 2 : ở T > 7 8 0 0 C , v n > 1 4 0 0 C /s . - T h ự c n g h iệ m k iể m c h ứ n g : R m /R e > 1 ,5 6 ; T = 7 4 0 0 C , = 2 0 p h ú t, v n < 1 0 0 0 C /s 17 4.3.2. Quan hệ TSCN với độ giãn dài H ìn h 4 .3 5 : Ả n h h ư ở n g c ủ a t h ô n g s ố c ô n g n g h ệ đ ến đ ộ g iã n d à i - V ù n g T S C N t ố i ư u c h o A m ax > 2 6 % : T = 7 3 0 7 4 0 0 C , = 8 15 p h ú t, v n = 1 6 0 1 8 0 0 C /s h o ặc T = 7 8 0 7 9 0 0 C , = 8 1 5 ph út , v n = 5 00 C /s , h oặ c T = 7 30 74 00 C , = 8 1 5 p h ú t, v n = 5 0 0 C /s - T h eo h àm h ồ i q u y : A m ax = 2 4 ,6 % , T = 7 8 0 0 C , = 1 0 p h ú t, v n = 5 0 0 C /s , - K iể m c h ứ n g : A m ax = 2 4 % , T = 7 8 0 0 C , = 1 0 p h ú t, v n = 5 0 0 C /s , 18 4.3.3. Quan hệ TSCN với độ thắt tỷ đối (Z) H ìn h 4 .3 8 : Ả n h h ư ở n g c ủ a t h ô n g s ố c ô n g n g h ệ đ ến đ ộ t h ắ t tỷ đ ố i Z - V ù n g T S C N t ối ư u ch o Z m ax = 6 2 % ; T = 7 3 0 7 4 0 0 C ; = 8 1 5 p h ú t; v n = 1 4 0 1 6 0 0 C /s v ù ng m àu đ ỏ th ẫm . - V ù n g T S C N c h o Z m in < 4 6 % : T = 7 5 0 7 7 0 0 C , > 1 8 p h ú t, v n > 1 5 0 0 C v ù n g m àu x an h t h ẫm . - T h eo H àm h ồ i q u y : T = 7 4 0 0 C , = 2 0 p h ú t, v n = 1 5 0 0 C /s c h o đ ộ t h ắt t ỷ đ ố i Z = 4 4 ,6 % , n ằm t ro n g v ù n g g iá t rị n h ỏ n h ất . 19 4.3.4. Quan hệ TSCN với chỉ số hấp thụ năng lượng H ìn h 4 .4 1 : Ả n h h ư ở n g c ủ a t h ô n g s ố c ô n g n g h ệ đ ến c h ỉ số h ấ p t h ụ n ă n g l ư ợ n g - V ù n g T S C N t ố i ư u c h o P S E > 1 8 0 0 0 M P a% , T = 7 8 0 7 9 0 0 C , = 8 1 2 p h ú t, v n = 1 4 0 1 6 0 0 C /s . - H àm h ồ i q u y : P S E = 1 8 5 1 0 M P a% , T = 7 8 0 0 C , = 1 0 p h ú t, v n = 1 5 0 0 C /s . - K iể m c h ứ n g : P S E = 1 7 9 9 2 M P a% , T = 7 8 0 0 C , = 1 0 p h ú t, v n = 1 5 0 0 C /s . 20 4.3.5. Quan hệ TSCN với hệ số biến cứng n H ìn h 4 .4 4 : Ả n h h ư ở n g c ủ a t h ô n g s ố c ô n g n g h ệ đ ến h ệ số b iế n c ứ n g n - V ù n g T S C N t ố i ư u c h o n > 0 ,1 8 t ư ơ n g ứ n g v ớ i T = 7 3 0 7 8 0 0 C , = 8 1 2 p h ú t, v n = 5 0 1 2 0 0 C /s . - K iể m c h ứ n g : n = 0 ,1 8 ; T = 7 8 0 0 C , = 1 0 p h ú t, v n = 5 0 0 C /s . 21 4.4. Xác lập bộ thông số công nghệ tối ưu Bộ TSCN tối ưu với các chỉ tiêu: 1) Bộ thông số công nghệ tối ưu Bảng 4.2: Bộ thông số công nghệ cho các chỉ tiêu tối ưu Các chỉ tiêu tối ưu Giá trị tối ưu Thông số công nghệ T (0C) (phút) vn (0C/s) Độ lớn hạt ferit dF (m) < 12 730750 816 80180 Độ lớn hạt Mactenxit dM (m) < 8 730750 815 80180 Tỷ phần mactenxit Vmmax > 30% 760790 1020 50150 Tỷ phần mactenxit Vmmin < 15% 730740 812 50 Giới hạn bền Rm, MPa >800MPa 760790 1822 100150 Giới hạn chảy Re, MPa >500MPa 770700 1820 150 Hệ số hóa bền Rm/Re >1,54 730740 1222 < 100 Độ giãn dài tương đối A(%) >26% 730740 815 >150 780790 815 50 Chỉ số PSE, MPa% >18000MPa% 780790 812 140160 Hệ số biến cứng n > 0,18 730780 812 50120 Bảng 4.3: Bộ thông số công nghệ tối ưu về độ bền - độ dẻo Hình 4.45: Quan hệ Rm và A% thép DP sau xử lý nhiệt 2) Kết quả thực nghiệm kiểm chứng bộ thông số công nghệ tối ưu Thực nghiệm kiểm chứng với 3 bộ thông số công nghệ. Kết quả khẳng định quy luật rút ra từ thực nghiệm có tính phổ quát và có thể sử dụng làm cơ sở thiết lập quy trình công nghệ nhằm thu được sự kết hợp giữa độ bền và độ dẻo của thép DP. Hình 4.46: Quan hệ giới hạn bền - độ giãn dài thép DP nghiệm chứng 4.5. Kết luận chương 4 1. Thép DP được luyện từ sắt xốp Việt Nam đã đáp ứng yêu cầu về thành phần hóa học theo ASTM. Tổ chức của thép có 2 pha F và M; độ lớn hạt nhỏ siêu mịn F nhỏ 8 12µm, M < 10µm; tỷ phần pha M từ 15 35%. 22 2. Sau khi xử lý nhiệt với cá chế độ Giới hạn bền từ 625 820MPa, giới hạn chảy 399 31MPa, độ giãn dài từ 17 26%, thỏa mãn mục tiêu về độ bền và độ dẻo của thép DP 1) Quan hệ của TSCN đến các chỉ tiêu bền: (Rm, Re) - Với 3 TSCN nghiên cứu cho giới hạn bền từ 625 đến 820MPa; trong đó, miền thông số cho giá trị giới hạn bền kéo lớn nhất trên 800MPa là T0C = 760 7900C, = 18 22 phút, vn = 100 1500C/s. Theo nghiệm của hàm hồi quy Rm = 817MPa khi T = 7800C, = 20 phút, vn = 1500C/s. - Miền TSCN nhận được giới hạn chảy lớn nhất Re = 600MPa khi nhiệt độ nung T = 770 7800C, = 18 20 phút, vn = 1500C/s. Theo nghiệm hàm hồi quy Re = 535MPa khi T = 7800C, = 20 phút, vn = 1500C/s 2) Ảnh hưởng của TSCN đến các chỉ tiêu dẻo: (A, Z, n, Rm/Re, PSE). - Miền thông số cho độ giãn dài lớn nhất trên 26% khi xử lý ở hai vùng nhiệt độ dưới 7500C và 780 7900C, = 8 15phút, vn = 1500C/s; - Miền TSCN cho độ thắt tỷ đối lớn nhất 67% khi T = 740MPa, = 20phút, vn = 1500C/s - Hệ số hóa bền lớn nhất tương ứng với nhiệt độ thấp 7400C, = 8 12 phút hay ở nhiệt độ cao 7800C, = 18 20phút. - Miền thông số cho PSE cực đại > 18000MPa% ở nhiệt độ nung khoảng 780 7900C, = 8 12phút và vn = 1500C/s. 3. Đã đưa ra 3 bộ thông số công nghệ tối ưu tương ứng với 3 vùng: - Vùng 1 độ bền cao Rm = 700 820MPa, độ dẻo tốt A = 17 20%; tương ứng với bộ TSCN T = 760 7800C, = 15 20 phút, vn = 100 1500C/s. - vùng 2 độ bền tốt 600 700MPa, độ dẻo tốt 20 24%, tương ứng với bộ TSCN T = 740 7600C, = 15 phút, vn = 50 1500C/s. - vùng 3 độ bền cao 600 700MPa, độ dẻo cao 24 28%; tương ứng với bộ TSCN T = 760 7800C, = 10 phút, vn = 50 1500C/s. 4. Thực nghiệm kiểm chứng tương ứng với 3 vùng theo tiêu chí độ bền và độ dẻo khác nhau, kết quả khẳng định bộ TSCN và các quy luật được đưa ra là đứng đắn, bảo đảm tính khoa học của các nghiên cứu. KẾT LUẬN CHUNG I. Những kết quả chính của Luận án 1. Thép AHSS - DP là sản phẩm của cách mạng CN 4.0 về luyện kim, được luyện từ sắt xốp - Sắt hoàn nguyên trực tiếp (DRI), và tinh luyện ngoài lò, có 23 thành phần hóa học rất cơ bản CMnSi, nhưng có hàm lượng tạp chất rất thấp, nhất là P và S%; thép được biến dạng và xử lý nhiệt đặc biệt để cho tổ chức 2 pha ferit và mactenxit, các pha có tỷ phần thể tích nhất định và nhất là kích thước hạt M cỡ 5-10µm. Thép vừa có độ bền cao vừa có tính dẻo tốt, so với mác thép HSLA có thành phần tương tự. Thép đang được ứng dụng sản xuất các khung dầm ô tô, cho phép chịu lực lớn hơn, giảm nhẹ khối lượng xe, tăng tính an toàn cho xe, góp phần hạ giá thành và thân thiện môi trường. 2. Luận án nghiên cứu mác thép DP780, nấu luyện từ sắt xốp MIREX, tinh luyện trong lò VIM-300. Thành phần hóa học được khống chế thép theo ASTM. Phôi thép được rèn từ Φ250mm xuống Φ14mm để làm mẫu thí nghiệm về tổ chức và cơ tính. Đã sử dụng phương pháp QHTN, các phương tiện đo lường hiện đại và sự hỗ trợ của các phần mềm công nghiệp xác định số lượng thí nghiệm và xử lý số liệu thí nghiệm, đảm bảo bộ số liệu thực nghiệm đủ độ chính xác và tin cậy để xử lý xác định quy luật các quan hệ. Để khống chế thành phần pha, tỷ phần pha và độ lớn hạt các pha, mẫu thép được xử lý nhiệt đặc biệt: nung trong vùng nhiệt độ 2 pha giữa Ac1 - Ac3 (7407800C), giữ nhiệt để đủ chuyển biến P thành Ô và bảo đảm độ lớn hạt F và Ô nhỏ; nguội nhanh để Ô chuyển biến thành M. Kết quả nghiên cứu ảnh hưởng TSCN cơ nhiệt đến tổ chức và cơ tính thép, khẳng định tính ưu việt của thép DP có độ bền cao và tính dẻo tốt nhờ thép có tổ chức hai pha F và M, có độ lớn hạt nhỏ min dF < 17m, dM < 10m, có tỷ phần VM 15 35%, có pha M tăng bền phân bố đều giữa các hạt F. Nhờ khống chế được các thông số công nghệ và điều khiển được sự hình thành tổ chức, nên thép DP nghiên cứu đã đạt giới hạn bền cao từ 625 819MPa, độ giãn dài từ 1727%, tương ứng với các chỉ tiêu theo ASTM. 3. Từ bộ số liệu xác lập được các hàm hồi quy quan hệ giữa 3 TSCN với các chỉ tiêu về tổ chức (độ lớn hạt F, M; tỷ phần M) và cơ tính (giới hạn bền, giới hạn chảy, độ giãn dài tương đối, chỉ số hấp thụ năng lượng, độ thắt tỷ đối). Đồng thời xây dựng các ảnh đồ đồng mức quan hệ 3 TSCN với các chỉ tiêu tổ chức và cơ tính để xác định các vùng tối ưu TSCN theo các yêu cầu về cơ tính. Từ các quy luật ảnh hưởng của 3 TSCN đến từng chỉ tiêu về tổ chức và cơ tính đã rút ra 3 vùng TSCN tối ưu (xem bảng 4.3 và hình 4.45): Vùng 1 có độ bền siêu bền Rm = 700 820MPa và tính dẻo tốt A = 17 20%; vùng 3 có độ bền cao 600 700MPa với tính dẻo cao với độ giãn dài từ 24 28%; 24 vùng trung gian (2) đồng thời có độ bền cao 600 700MPa và tính dẻo tốt có độ giãn dài 20 24%. Mỗi vùng cơ tính tương ứng với một bộ TSCN nhất định. Các quy luật đưa ra của luận án, đã qua thí nghiêm kiểm chứng, có thể sử dụng để làm cơ sở thiết lập QTCN xử lý cơ nhiệt khi cần tạo phôi thép DP với điều kiện về thành phần hóa học của thép DP tương tự, có độ sạch tạp chất cao và được luyện từ sắt xốp và tinh luyện ngoài lò. Các kết quả nghiên cứu đã mở ra mật hướng mới cho việc sản xuất phôi thép DP phục vụ cho kinh tế và quốc phòng, thay thế nhập ngoại. II. Những đóng góp mới của luận án 1. Đã đưa ra 8 hàm hồi quy dùng để xác định bộ thông số công nghệ cho 8 chỉ tiêu tối ưu về tổ chức và cơ tính 2. Đã cho 8 quy luật quan hệ giữa giải thông số công nghệ nhiệt độ nung giữa vùng 2 pha, thời gian giữ nhiệt và tốc độ nguội với các giá trị của độ lớn hạt, tỷ phần 2 pha F, M, Rm, Re, A, độ thắt tỷ đối, hệ số biến cứng, tỷ số hóa bền, chỉ số hấp thụ năng lượng PSE. 3. Đưa ra 3 vùng thông số công nghệ tối ưu để thu được cơ tính của thép song pha độ bền cao tính dẻo tốt, độ bền và tính dẻo đều tốt và tính dẻo cao độ bền tốt, có thể sử dụng để thiết lập các quy trình công nghệ xử lý cơ nhiệt phục vụ yêu cầu sử dụng hoặc yêu cầu gia công biến dạng. III. Những vấn đề cần nghiên cứu tiếp Trong khuôn khổ Luận án tiến sĩ căn cứ vào các cơ sở lý thuyết để tiến hành các thực nghiệm từ đó rút ra các quy luật về quan hệ các TSCN với chỉ tiêu cơ tính của thép DP, nên một số TSCN chưa được đề cập đến cần được tiếp tục nghiên cứu bổ sung. Đồng thời, Luận án rất cần được nghiên cứu áp dụng cho một sản phẩm quốc phòng nhằm bổ sung các quy luật cụ thể áp dụng trong điều kiện sản xuất hàng loạt. 25 DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ 1. Đinh Văn Hiến, Nguyễn Văn Chúc, Trần Công Thức, Đinh Bá Trụ (2015), “Nghiên cứu thử nghiệm công nghệ tạo phôi thép 9Mn2Si từ nguyên liệu sắt xốp”, Tạp chí khoa học công nghệ trường ĐH công nghiệp Hà Nội, số 27/2015, tr. 162 - 165. 2. Trần Công Thức, Lê Văn Long, Đinh Bá Trụ (2015), “Nghiên cứu luyện mác thép cacbon thấp từ sắt xốp để chế tạo vỏ liều đạn và vỏ động cơ R122”, Tạp chí cơ khí Việt Nam, Số 6/2015, tr. 52 - 56. 3. Đinh Văn Hiến, Trần Công Thức, Lê Văn Long, Đinh Bá Trụ (2015), “Nghiên cứu chế tạo thép chuyển pha do biến dạng dẻo họ CMnSiAL có nguồn gốc sắt xốp”, Tạp chí Nghiên cứu Khoa học và Công nghệ Quân sự, Viện Khoa học Kỹ thuật Quân sự, 10/2015, tr.160 - 167. 4. Trần Công Thức, Nguyễn Trường An (2016), “Nghiên cứu thông số công nghệ tạo tổ chức song pha của thép 09Mn2Si”, Kỷ yếu Hội nghị KH&CN toàn quốc về cơ khí - Động lực ĐHBKHN, 10/2016, tr. 362 - 367. 5. Trần Công Thức, Nguyễn Trường An (2017), “Nghiên cứu ảnh hưởng của các thông số công nghệ đến cơ tính của thép song pha 09Mn2Si”, Tạp chí KH và KT HVKTQS, số 185 - 8/2017, tr. 16 - 22. 6. Trần Công Thức, Nguyễn Trường An (2017), “Nghiên cứu ảnh hưởng của các thông số công nghệ đến tổ chức của thép song pha 09Mn2Si”, Kỷ yếu hội nghị KH-CN toàn quốc về Cơ khí - Động lực 2017, tr. 55 - 59. 7. Trần Công Thức, Nguyễn Trường An, Đinh Bá Trụ (2017), “Nghiên cứu ảnh hưởng của thông số công nghệ cơ nhiệt đến hệ số hóa bền và chỉ số hấp thụ năng lượng của thép song pha 09Mn2Si”, Kỷ yếu hội nghị Cơ học toàn quốc lần thứ X, Hà Nội 12/2017, tr. 1220 - 1224. 8. Trần Công Thức, Đinh Bá Trụ, Nguyễn Trường An (2018), “Nghiên cứu sản xuất thép song pha (DP)”, Hội nghị KH&CN toàn quốc về cơ khí lần thứ V - Đại học Công nghiệp Hà Nội 10/2018.
File đính kèm:
- tom_tat_luan_an_nghien_cuu_anh_huong_cua_thong_so_cong_nghe.pdf