Tóm tắt Luận án Phân tích sự làm việc không gian của kết cấu lõi cứng nhà nhiều tầng chịu tải trọng ngang tĩnh

Trong lĩnh vực kết cấu công trình nói chung và chuyên ngành Cơ học kết

cấu nói riêng thì việc tìm một sơ đồ tính không quá phức tạp cho hệ kết cấu

không gian phức tạp là một trong các nhiệm vụ quan trọng, cơ bản của Cơ học

kết cấu. Đến thời điểm hiện tại ở Việt Nam và trên thế giới, các nghiên cứu về

mô hình tính toán lõi cứng và hệ kết cấu bằng thanh công xôn theo các hướng

tiếp cận khác nhau [11], [25], [41], độ cứng của thanh thường tính bằng tổng độ

cứng của các kết cấu đứng gồm vách, lõi và cột, chưa kể đến độ cứng của sàn,

trong khi sàn là một bộ phận quan trọng trong hệ kết cấu có độ cứng xác định.

Việc nghiên cứu một sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của

sàn, gồm lõi cứng, cột và sàn trong hệ kết cấu nhiều tầng giúp cho người thiết

kế hiểu được bản chất cơ học của các cấu kiện kết cấu, hiểu được ảnh hưởng

của các đại lượng đặc trưng của các cấu kiện đến sự làm việc chung của cả hệ,

từ đó có được những nhận định nhanh phù hợp với quy luật cơ học khi hệ kết

cấu làm việc là vấn đề rất cần thiết. Do lõi cứng đóng vai trò quan trọng trong

kết cấu chịu lực nhiều tầng và quyết định chủ yếu đến các phản ứng tính toán

của toàn hệ kết cấu nên nếu có một cách tính toán nhanh trong việc lựa chọn sơ

bộ các kích thước đặc trưng của lõi cứng thì sẽ mang lại hiệu quả to lớn cho

việc thiết kế ngay từ giai đoạn thiết kế sơ bộ

pdf 26 trang dienloan 15680
Bạn đang xem 20 trang mẫu của tài liệu "Tóm tắt Luận án Phân tích sự làm việc không gian của kết cấu lõi cứng nhà nhiều tầng chịu tải trọng ngang tĩnh", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Tóm tắt Luận án Phân tích sự làm việc không gian của kết cấu lõi cứng nhà nhiều tầng chịu tải trọng ngang tĩnh

Tóm tắt Luận án Phân tích sự làm việc không gian của kết cấu lõi cứng nhà nhiều tầng chịu tải trọng ngang tĩnh
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC XÂY DỰNG
NCS. Ninh Đức Thuận
PHÂN TÍCH SỰ LÀM VIỆC KHÔNG GIAN CỦA KẾT CẤU
LÕI CỨNG NHÀ NHIỀU TẦNG CHỊU TẢI TRỌNG NGANG TĨNH
Chuyên ngành : Cơ kỹ thuật
 Mã số: 62. 52. 01. 01
TÓM TẮT LUẬN ÁN TIẾN SỸ KỸ THUẬT
NGƯỜI HƯỚNG DẪN KHOA HỌC
 PGS.TS. NGUYỄN VĂN HÙNG
Hà nội - năm 2016
1
A. GIỚI THIỆU LUẬN ÁN
1. Cơ sở khoa học và thực tiễn.
Trong lĩnh vực kết cấu công trình nói chung và chuyên ngành Cơ học kết
cấu nói riêng thì việc tìm một sơ đồ tính không quá phức tạp cho hệ kết cấu
không gian phức tạp là một trong các nhiệm vụ quan trọng, cơ bản của Cơ học
kết cấu. Đến thời điểm hiện tại ở Việt Nam và trên thế giới, các nghiên cứu về
mô hình tính toán lõi cứng và hệ kết cấu bằng thanh công xôn theo các hướng
tiếp cận khác nhau [11], [25], [41], độ cứng của thanh thường tính bằng tổng độ
cứng của các kết cấu đứng gồm vách, lõi và cột, chưa kể đến độ cứng của sàn,
trong khi sàn là một bộ phận quan trọng trong hệ kết cấu có độ cứng xác định.
Việc nghiên cứu một sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của
sàn, gồm lõi cứng, cột và sàn trong hệ kết cấu nhiều tầng giúp cho người thiết
kế hiểu được bản chất cơ học của các cấu kiện kết cấu, hiểu được ảnh hưởng
của các đại lượng đặc trưng của các cấu kiện đến sự làm việc chung của cả hệ,
từ đó có được những nhận định nhanh phù hợp với quy luật cơ học khi hệ kết
cấu làm việc là vấn đề rất cần thiết. Do lõi cứng đóng vai trò quan trọng trong
kết cấu chịu lực nhiều tầng và quyết định chủ yếu đến các phản ứng tính toán
của toàn hệ kết cấu nên nếu có một cách tính toán nhanh trong việc lựa chọn sơ
bộ các kích thước đặc trưng của lõi cứng thì sẽ mang lại hiệu quả to lớn cho
việc thiết kế ngay từ giai đoạn thiết kế sơ bộ.
2. Mục đích, phương pháp, phạm vi và đối tượng nghiên cứu.
- Mục đích. Nghiên cứu một sơ đồ tính thanh công xôn xấp xỉ có kể đến ảnh
hưởng của sàn cho hệ kết cấu lõi cứng nhà nhiều tầng, có sơ đồ giằng. Nghiên
cứu về sơ đồ tính là một trong các nhiệm vụ của Cơ học Kết cấu. Đồng thời,
qua các nghiên cứu bằng số, xây dựng biểu thức thực nghiệm, các bảng tra xác
định độ cứng của liên kết đàn hồi nhằm lựa chọn nhanh kích thước tiết diện lõi
cứng gần đúng với một số dạng nhà trong giai đoạn thiết kế sơ bộ công trình
- Phương pháp nghiên cứu.
+ Nghiên cứu lý thuyết kết hợp với các thử nghiệm bằng số trên máy tính, bằng
2
phần mềm ETABS, theo phương pháp phần tử hữu hạn, sử dụng ETABS với
vai trò như một công cụ thí nghiệm số, đồng thời làm chuẩn để so sánh, kiểm
chứng kết quả nghiên cứu ;
+ Sử dụng các phương pháp của cơ học kết cấu, theo nguyên lý cân bằng lực và
thỏa mãn điều kiện biên của kết cấu, dựa trên các kết quả đã có, viết các công
thức dưới dạng tổng quát, chuyển đổi chúng về dạng ma trận độ cứng và véc tơ
tải trọng nút để phục vụ cho việc thiết lập chương trình tính toán trên phần
mềm Visual Basic 6.0. Thực nghiệm số dựa trên chương trình đã lập và các kết
quả nhận được của cùng một bài toán nhưng được giải bằng phần mềm thương
mại ETABS.
+ Sử dụng chương trình tự lập và phần mềm ETABS xây dựng các đường
thực nghiệm độ cứng các liên kết đàn hồi, từ đó thiết lập các biểu thức thực
nghiệm gần đúng kết hợp các bảng tra xác định độ cứng của liên kết đàn hồi.
- Phạm vi và đối tượng nghiên cứu: Do hiện nay ở Việt Nam có nhiều nhà
cao từ 10 đến 20 tầng nên phạm vi nghiên cứu của luận án với kết cấu từ 10
đến 20 tầng, có hệ kết cấu với mặt bằng đối xứng gồm lõi cứng (loại lõi cứng
một khoang), sàn phẳng và cột, chịu tải trọng ngang tĩnh hoặc tương đương
tĩnh, nhằm lựa chọn nhanh kích thước tiết diện lõi cứng gần đúng trong giai
đoạn thiết kế sơ bộ.
3. Nội dung, bố cục của luận án.
Nội dung luận án trình bày trong 113 trang gồm phần mở đầu, 3
chương, kết luận và kiến nghị, 55 hình vẽ, 51 bảng biểu, phụ lục 1 gồm 25
trang, phụ lục 2 về mã nguồn chương trình AC-1 gồm 29 trang và phụ lục 3 về
chương trình AC-2 gồm 27 trang.
 NHỮNG KẾT QUẢ MỚI CỦA LUẬN ÁN:
- Từ sơ đồ tính không gian phức tạp (gồm lõi cứng, cột và sàn) đã mô hình hóa
thành một sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của sàn, trong đó
lõi cứng mô hình bằng các phần tử thanh liên kết ngàm vào móng, có liên kết
nửa cứng giữa các phần tử thanh, cột và sàn liên kết với lõi cứng bằng các liên
3
kết đàn hồi.
- Đã xây dựng chương trình AC-1, AC-2 làm công cụ để nghiên cứu, phân tích
kết cấu lõi cứng nhiều tầng.
-Đã khảo sát sự ảnh hưởng của một số yếu tố đến chuyển vị đỉnh trong kết cấu
nhiều tầng có sơ đồ giằng, có mặt bằng đối xứng, khi chịu tải trọng ngang,
gồm: số tầng, bề dày lõi cứng, chiều cao lanh tô cửa lõi cứng, chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng, số lượng cột, mô men quán tính các cột,
bề dày sàn, mô đun đàn hồi của vật liệu. Trong các thông số này thì chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng 1a là yếu tố ảnh hưởng nhiều nhất đến độ
cứng lõi cứng.
- Đã xây dựng biểu thức thực nghiệm kết hợp các bảng tra xác định độ cứng
của liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và độ cứng của
liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z với một số dạng kết cấu
nhiều tầng, có sơ đồ giằng, chịu tải trọng ngang để lựa chọn kích thước tiết
diện lõi cứng gần đúng trong giai đoạn thiết kế sơ bộ công trình.
B. NỘI DUNG LUẬN ÁN
MỞ ĐẦU
CHƯƠNG 1: TỔNG QUAN VỀ VẤN ĐỀ NGHIÊN CỨU.
1.1. Các hệ kết cấu nhiều tầng sử dụng lõi cứng chịu lực.
1.1.1. Hệ kết cấu lõi chịu lực.
1.1.2. Hệ kết cấu hộp chịu lực.
1.1.3. Hệ kết cấu khung – lõi.
1.1.4. Hệ kết cấu khung – hộp.
1.1.5. Hệ kết cấu hộp - tường vách.
1.1.6. Hệ kết cấu hộp – lõi.
1.1.7. Hệ kết cấu tường – lõi.
1.2. Phương pháp và sơ đồ tính toán kết cấu nhiều tầng
1.2.1. Phương pháp tính toán kết cấu nhiều tầng.
4
1.2.2. Sơ đồ tính toán kết cấu nhiều tầng.
1.3. Mô hình liên kết nửa cứng ở hai đầu phần tử thanh.
1.4. Khái niệm về độ cứng.
1.5. Kết quả nghiên cứu của một số tác giả trên thế giới và Việt Nam liên
quan đến đề tài nghiên cứu.
1.5.1. Kết quả nghiên cứu của một số tác giả liên quan đến mô hình tính
toán kết cấu lõi cứng.
1.5.2. Kết quả nghiên cứu của một số tác giả liên quan đến kết cấu có liên
kết nửa cứng và liên kết đàn hồi.
1.6. Nhận xét chung.
Đến thời điểm hiện tại ở Việt Nam và trên thế giới, các nghiên cứu về mô
hình tính toán lõi cứng và hệ kết cấu bằng thanh công xôn theo các hướng tiếp
cận khác nhau, độ cứng của thanh thường tính bằng tổng độ cứng của các kết
cấu đứng gồm vách, lõi và cột, chưa kể đến độ cứng của sàn, trong khi sàn là
một bộ phận quan trọng trong hệ kết cấu có độ cứng xác định.
 Việc nghiên cứu về sơ đồ tính là một nhiệm vụ quan trọng của Cơ học kết
cấu, việc tách hệ kết cấu thực thành hai hệ: hệ lõi cứng và các hệ còn lại, liên
kết giữa hai hệ này là các liên kết đàn hồi. Thông qua các đặc trưng cơ lý của
các liên kết đàn hồi này có kể đến ảnh hưởng của các sàn đến sự làm việc của
lõi cứng, còn ít được công bố kết quả nghiên cứu.
1.7. Một số giả thiết được sử dụng trong luận án
1.8. Mục đích, phương pháp, phạm vi và đối tượng nghiên cứu.
CHƯƠNG 2: MÔ HÌNH TÍNH TOÁN HỆ KẾT CẤU LÕI CỨNG NHIỀU
TẦNG CÓ SƠ ĐỒ GIẰNG, CHỊU TẢI TRỌNG NGANG.
Chương này mô hình hóa từ công trình thực về sơ đồ tính công trình (sơ đồ
tính không gian phức tạp gồm lõi cứng, cột và sàn), từ sơ đồ tính không gian
phức tạp chuyển về sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của sàn,
trong đó lõi cứng mô hình bằng các phần tử thanh liên kết ngàm vào móng, có
liên kết nửa cứng giữa các phần tử thanh, cột và sàn liên kết với lõi cứng mô
5
hình bằng các liên kết đàn hồi, thiết lập thuật toán và chương trình để phân tích
mô hình tính theo phương pháp phần tử hữu hạn, xác định độ cứng các liên kết
đàn hồi. Tiến hành các thử nghiệm số đối với một số bài toán, so sánh kết quả
tính toán theo chương trình trong luận án và phần mềm ETABS [9], [30] để
kiểm tra độ tin cậy.
2.1. Mô hình hóa từ công trình thực về sơ đồ thanh công xôn xấp xỉ.
Từ sơ đồ tính công trình, tác giả mô hình hóa thành sơ đồ tính xấp xỉ có kể đến
ảnh hưởng của sàn, thể hiện ở hình 2.2, được gọi là sơ đồ thanh công xôn xấp
xỉ. Trong đó, lõi cứng mô hình bằng các phần tử thanh không gian có mặt cắt
tiết diện kín, hở, liên kết ngàm vào móng, làm việc đồng thời với các bộ phận
kết cấu khác tại mức sàn các tầng thông qua liên kết đàn hồi tại các tầng (thay
thế sự làm việc đồng thời giữa lõi cứng và các bộ phận kết cấu khác gồm cột và
sàn), liên kết giữa các phần tử thanh tại các tầng có dạng nửa cứng (liên kết có
độ cứng hữu hạn) để phù hợp với công nghệ thi công xây dựng.
tiÕt diÖn kÝn
tiÕt diÖn hë
mÆt c¾t lâi cøng
mÆt c¾t lâi cøng
 Hình 2.2: Sơ đồ thanh công xôn xấp xỉ
2.1.1. Ma trận độ cứng của phần tử thanh có liên kết nửa cứng.
2.1.2. Các phần tử của ma trận độ cứng và véc tơ tải trọng nút của phần tử
thanh hai đầu liên kết nửa cứng.
6
 Xét phần tử thanh trong mô hình tính ở hình 2.2, có chiều dài là L2 và các đặc
trưng tiết diện xI , yI , xoI , G, A. Hai đầu 1 và 2 có liên kết nửa cứng được mô
hình hóa bằng các lò xo, với độ mềm cho chuyển vị dọc trục là uk1 ,
uk2 ;
Độ mềm của biến dạng uốn trong mặt phẳng YZ gồm độ mềm của chuyển vị
ngang là vk1 ,
vk2 và độ mềm của chuyển vị xoay là

1k ,

2k . Độ mềm của biến
dạng uốn trong mặt phẳng XZ gồm chuyển vị ngang là wk1 ,
wk2 và chuyển vị
xoay là 1k ,

2k . Độ mềm của biến dạng xoắn quanh trục Z là
1k ,
2k .
Quan hệ giữa biến dạng và nội lực của liên kết được xác định như sau:
xMk . = ; yMk . = ; Nku u .= ; yv Vkv .= ; xw Vkw .= ; xoMk . = .
2.1.3. Ma trận độ cứng và véc tơ tải trọng nút của phần tử thanh có liên
kết nửa cứng, có liên kết đàn hồi.
- Ma trận độ cứng của thanh có các gối tựa đàn hồi [4].
Thay các độ cứng liên kết đàn hồi XiC , YiC , ZiC , XXiC , YYiC , ZZiC (i = 1 đến n,
n là số tầng) vào đường chéo chính của ma trận độ cứng của thanh, ta có:
[ ] [ ][ ][ ] [ ]ssss RuCK =+ . (2.9)
trongđó: [ ]sC là véc tơ độ cứng liên kết đàn hồi của thanh.
2.2. Sơ đồ khối và lập trình.
2.2.1. Sơ đồ khối.
2.2.2. Lập trình.
 Hình 2.6: Giao diện chương trình AC-1, khi nhập file dữ liệu chuyển vị.
7Hình 2.5: Giao diện chương trình, Hình 2.8: Giao diện chương trình
AC-1 khi nhập thông tin về vật liệu AC- 2, khi nhập thông tin tải trọng
và kích thước hình học lõi cứng. và độ mềm của liên kết, độ cứng
 của liên kết đàn hồi tại các tầng.
2.3. Kiểm tra độ tin cậy của lời giải và chương trình tính.
Để kiểm tra độ tin cậy của lời giải và chương trình tính, tác giả tiến
hành so sánh kết quả bằng số với phần mềm ETABS có vai trò như một công
cụ thí nghiệm số, đồng thời làm chuẩn để so sánh.
2.4. Nguyên nhân cần xác định hệ số điều chỉnh độ cứng chống uốn, chống
xoắn tương đương khi phân tích lõi cứng mô hình bằng các phần tử thanh.
2.4.1. Phân tích kết cấu lõi cứng theo phương pháp giải tích và phương
pháp phần tử hữu hạn.
Bảng 2.1: Bảng kết quả chênh lệch 1S (%) về mômen quán tính trung tâm của
lõi cứng quanh trục Y.
Stt 1a (m) Chuyển vị ngang tại
đỉnh theo trục X (m)
Y
cxI
( 4m )
Y
ltI
( 4m )
1S
(%)
1 1a =0 0,000592 86,377 102,544 15,766
2 1a =2 m 0,001970 25,948 102,344 74,646
3 1a =4 m 0,002729 18,729 100,944 81,446
4 1a =8 m 0,00450 11,352 91,131 87,543
8
Từ mô hình tính lõi cứng bằng các phần tử tấm, khi chuyển sang mô
hình lõi cứng bằng các phần tử thanh cần phải xác định hệ số điều chỉnh độ
cứng chống uốn, chống xoắn tương đương.
Có sự chênh lệch về mô men quán tính chống uốn của của lõi cứng khi
mô tả lõi cứng bằng thanh công xôn thay thế và mômen quán tính chống uốn
của lõi cứng xác định theo công thức lý thuyết sức bền vật liệu. Độ cứng của
lõi cứng khi mô hình bằng phần tử thanh khác với độ cứng của lõi cứng khi mô
hình lõi cứng bằng các phần tử tấm. Vì vậy, khi quy đổi lõi cứng về thanh công
xôn thay thế thì cần phải sử dụng hệ số điều chỉnh độ cứng chống uốn, chống
xoắn tương đương.
2.5. Cách xác định hệ số điều chỉnh độ cứng chống uốn, chống xoắn khi
phân tích lõi cứng mô hình bằng các phần tử thanh.
2.5.1. Cách xác định hệ số điều chỉnh độ cứng chống uốn, chống xoắn của
lõi cứng thông qua cân bằng năng lượng
2.5.1.1. Phương pháp xác định: Xác định thông qua việc cân bằng thế năng
biến dạng tích lũy trong hệ đàn hồi.
2.5.1.2. Ví dụ tính toán.
- Hệ số độ cứng chống uốn, chống xoắn trong tất cả các trường hợp đều có giá
trị dương, nằm trong khoảng (0, 1), có giá trị khác nhau và phụ thuộc cả vào tải
trọng, tức là với các dạng tải trọng khác nhau thì hệ số độ cứng chống uốn,
chống xoắn khác nhau. Nguyên nhân do độ cứng là đại lượng đặc trưng cho
khả năng chống lại biến dạng của cấu kiện, với các dạng tải trọng khác nhau thì
biến dạng khác nhau. Và việc xác định hệ số độ cứng xác định thông qua cân
bằng toán học về năng lượng giữa hệ kết cấu mô tả lõi cứng bằng các phần tử
thanh và phần tử tấm.
- Giá trị hệ số độ cứng luôn nằm trong khoảng (0, 1) là do ứng xử của hệ tấm
khác với hệ thanh khi chịu tải trọng ngang. Khi lõi mô tả bằng các phần tử tấm
là hệ kết cấu không gian với mô hình tính toán liên tục nên có độ cứng lớn hơn
khi mô tả lõi cứng bằng các phần tử thanh với mô hình tính toán rời rạc.
9
Bảng 2.3: Bảng kết quả hệ số điều chỉnh độ cứng chống uốn, chống xoắn tương
đương với các dạng tải trọng khác nhau.
Tải trọng
ngang phân
bố đều
Tải trọng
ngang phân
bố tam giác
Tải trọng
ngang tập
trung trên
đỉnh
xoM
tại đỉnh
xoM tập
trung tại
các mức
sàn
Số
tầng
kết
cấu
Mặt cắt
 tiết diện
x y x y x y xo xo
10 0,637 0,233 0,524 0,187 0,723 0,250 0,058 0,106
15 0,723 0,255 0,580 0,202 0,770 ,265 0,028 0,055
20
a=8,3m,
1a =4m,
= 0,3m 0,760 0,270 0,603 0,213 0,788 0,278 0,017 0,034
10 0,700 0,254 0,555 0,203 0,757 0,268 0,036 0,068
15 0,757 0,283 0,601 0,224 0,786 0,294 0,018 0,036
20
a=6,3m,
1a =3m,
 = 0,3 m
0,779 0,311 0,614 0,247 0,796 0,324 0,012 0,023
10 0,751 0,318 0,596 0,253 0,781 0,337 0,022 0,041
15 0,780 0,395 0,614 0,316 0,794 0,425 0,014 0,025
20
a=4,3m,
1a =2m,
 = 0,3 m 0,791 0,474 0,621 0,382 0,799 0,522 0,011 0,019
2.5.2. Cách xác định hệ số điều chỉnh độ cứng chống uốn, chống xoắn của
lõi cứng thông qua cân bằng chuyển vị tại đỉnh.
2.5.2.1. Phương pháp xác định: Xác định thông qua việc cân bằng chuyển vị
tại đỉnh.
2.5.2.2. Ví dụ tính toán.
Thể hiện ở mục 3.2.3 và 3.2.4, kết quả tính toán thể hiện ở bảng 3.10.
2.5.3. Nhận xét về các cách xác định hệ số điều chỉnh độ cứng chống uốn,
chống xoắn của lõi cứng.
- Với các phương pháp xác định hệ số điều chỉnh độ cứng chống uốn, chống
xoắn khác nhau sẽ tìm được giá trị hệ số điều chỉnh độ cứng khác nhau.
- Hệ số điều chỉnh độ cứng chống uốn, chống xoắn trong tất cả các trường hợp
đều có giá trị dương, nằm trong khoảng (0, 1), có giá trị khác nhau và phụ
10
thuộc cả vào dạng tải trọng cụ thể. Nguyên nhân bởi vì, độ cứng của lõi khi mô
hình bằng phần tử thanh và mô hình bằng phần tử tấm có giá trị khác nhau.
2.6. Kiểm tra thuật toán và chương trình AC-1, AC-2.
2.6.1. Chọn công trình để tính toán, thực nghiệm bằng  ... án.
- Kết quả tính toán từ bảng 3.2 đến bảng 3.10 với sự khảo sát đối với bài toán
cụ thể của 8 yếu tố cùng các nhận xét về tỷ lệ % tăng, giảm về chuyển vị ngang
và xoay tại đỉnh thể hiện ở bảng 3.11 cho thấy có thể xác định quy luật để điều
chỉnh nhanh các thông số này trong giai đoạn thiết kế sơ bộ công trình. Bên
cạnh đó, kết quả khảo sát 8 yếu tố cho thấy: khi thay đổi mô đun đàn hồi của
vật liệu thì chuyển vị tại đỉnh thay đổi nhỏ nhất, khi thay đổi chiều rộng khoảng
hở mặt cắt tiết diện lõi cứng 1a thì chuyển vị tại đỉnh lớn nhất. Như vậy, với
lõi cứng tiết diện hở thì chiều rộng khoảng hở mặt cắt tiết diện lõi cứng 1a là
yếu tố quan trọng nhất ảnh hưởng đến độ cứng lõi cứng, bởi vì nó gây ra độ
lệch tâm giữa tâm cứng và tâm hình học, chính độ lệch tâm này gây ra hiện
tượng xoắn và làm mất tính đối xứng, dẫn đến lõi cứng tiết diện hở có xu
hướng bị biến dạng xung quanh chu vi và mất tính chất phẳng của tiết diện tại
vị trí hai bên mép khoảng hở lõi cứng, bắt sàn cùng làm việc với lõi cứng.
3.2. Xây dựng biểu thức thực nghiệm xác định độ cứng của liên kết đàn hồi
cho kết cấu nhiều tầng, có sơ đồ giằng, chịu tải trọng ngang.
3.2.1. Giới thiệu mục đích.
Mục này sử dụng mô hình đã xây dựng ở chương 2 và kết quả chuyển
vị đỉnh của một số kết cấu đã khảo sát ở mục 3.1 để xây dựng công thức thực
nghiệm với mô hình tính hệ kết cấu lõi cứng dạng thanh liên tục, độ cứng
17
không đổi, có liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y
( XiC , YiC , i = 1→n) và liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z
( ZZiC , i = 1→n), với giả thiết độ cứng của liên kết đàn hồi XiC , YiC và ZZiC (i
= 1→n), có giá trị giống nhau. Với công thức thực nghiệm và các bảng tra có
thể nội suy xác định độ cứng của liên kết đàn hồi XiC , YiC , ZZiC (i = 1→n),
sau đó thay giá trị độ cứng kết hợp các số liệu khác của lõi cứng vào chương
trình AC-2 sẽ xác định được chuyển vị của hệ kết cấu, so sánh với các quy định
về giới hạn chuyển vị đỉnh công trình [42], [43], có thể lựa chọn nhanh kích
thước tiết diện lõi cứng trong giai đoạn thiết kế sơ bộ với một số dạng kết cấu.
3.2.2. Trình tự xây dựng biểu thức thực nghiệm.
3.2.3. Chọn kết cấu để tính toán thực nghiệm bằng số.
- Xét các kết cấu 10 tầng, 15 tầng và 20 tầng có mặt bằng đối xứng gồm lõi
cứng, cột và sàn phẳng như hình 3.22 và hình 3.23, chiều cao mỗi tầng h = 3,3
m, lõi cứng dày 0,3 m, chiều rộng khoảng hở mặt cắt tiết diện lõi cứng 1a =
4 m, kích thước hình học lõi cứng, cột và sàn các tầng giống nhau. Vật liệu có
mô đun đàn hồi E = 2,9 x 910 2/mdaN , hệ số Poison  = 0,2, tải trọng gió
tác động theo trục X và Y với oW = 95 2/mdaN (chỉ xét thành phần tĩnh, giá
trị thể hiện ở bảng 2.4 và 2.5). Các tham số phân tích thay đổi gồm:
+ Số tầng n = 10 tầng; 15 tầng; 20 tầng.
+ Số lượng cột trên mặt bằng cn = 8 cột; 12 cột; 16 cột.
+ Mô men quán tính các cột xcI , ycI , xocI tính theo biểu thức (3.1), (3.2),
(3.3), sử dụng kết quả ở bảng 3.1.
+ Bề dày sàn t = 0,2 m; 0,22 m; 0,25 m.
3.2.4. Kết quả tính toán.
- Sơ đồ tính toán: Sử dụng sơ đồ tính không gian bằng phần mềm ETABS và sơ
đồ tính thanh công xôn xấp xỉ bằng chương trình AC-2, thể hiện ở hình 3.24.
18
Hình 3.24: Sơ đồ tính không gian bằng phần mềm ETABS và sơ đồ thanh công
xôn xấp xỉ tính bằng chương trình AC-2.
500
600
700
800
900
1000
1100
1200
1300
1400
1500
0 200 000 400 000 600 000 800 000 1 000 000 1 200 000 1 400 000 1 600 000
§é cøng cña liªn kÕt ®µn håi ng¨n c¶n chuyÓn vÞ ngang theo trôc X (daN/m)
Iyc
 (m
4)
10 tÇng (8 cét) 10 tÇng (12 cét) 10 tÇng (16 cét)
15 tÇng (8 cét) 15 tÇng (12 cét) 15 tÇng (16 cét)
20 tÇng (8 cét) 20 tÇng (12 cét) 20 tÇng (16 cét)
Hình 3.25: Biểu đồ độ cứng của liên kết đàn hồi XiC (i = 1→n), trong kết cấu
10, 15 và 20 tầng, t = 0,22 m, khi mô men quán tính trung tâm các cột quanh
trục Y thay đổi.
1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
0 1 000 000 2 000 000 3 000 000 4 000 000 5 000 000 6 000 000 7 000 000 8 000 000 9 000 000 10 000 000
§é cøng cña liªn kÕt ®µn håi ng¨n c¶n chuyÓn vÞ xoay quanh trôc Z (daNm/rad)
Ixo
c (
m4
)
10 tÇng (8 cét) 10 tÇng (12 cét) 10 tÇng (16 cét)
15 tÇng (8 cét) 15 tÇng (12 cét) 15 tÇng (16 cét)
20 tÇng (8 cét) 20 tÇng (12 cét) 20 tÇng (16 cét)
Hình 3.26: Biểu đồ độ cứng của liên kết đàn hồi ZZiC (i = 1→n) trong kết cấu
10, 15 và 20 tầng, t = 0,22 m, khi mô men quán tính cực của các cột thay đổi.
19
3.2.5. Đề xuất biểu thức thực ngiệm.
- Phương pháp đề xuất biểu thức thực nghiệm: Trên cơ sở biểu đồ độ cứng thể
hiện từ hình 3.25 đến hình 3.30, tác giả nhận thấy biểu đồ độ cứng XiC , YiC ,
ZZ
iC (i = 1→n) có dạng gần với bậc nhất nên chọn một đường độ cứng quy
ước tương ứng với các giá trị độ cứng quy ước và độ dốc của đường đó, các
yếu tố ảnh hưởng đến độ cứng XiC , YiC , ZZiC (i = 1→n) xét đến thông qua các
hệ số và lập thành bảng.
- Dựa trên phương pháp như trên, tác giả đề xuất biểu thức thực nghiệm xác
định độ cứng XiC , YiC , ZZiC (i = 1→n) có dạng:
0
)0()0(21)0( )..(. t
tIIaCC ycycXuXuXuXiXi −++= (daN/m) (3.4)
0
)0()0(21)0( )..(. t
tIIaCC xocxocxoxoxoZZiZZi −++= (daNm/rad) (3.5)
0
)0()0(21)0( )..(. t
tIIaCC xcxcYuYuYuYiYi −++= (daN/m) (3.6)
Cách xác định các tham số trong công thức (3.4), (3.5), (3.6) thể hiện ở mục
3.2.5. Giá trị Xu1 , Xu2 , xo1 , xo2 , Yu1 , Yu2 lần lượt được thể hiện từ bảng
3.25 đến bảng 3.30.
Với biểu thức thực nghiệm và các số liệu nêu trên có thể nội suy xác định độ
cứng XiC , YiC , ZZiC (i = 1→n) đối với các kết cấu từ 10 đến 20 tầng, có mặt
bằng kết cấu đối xứng gồm lõi cứng, hệ cột và sàn tương tự như hình 3.22 và
hình 3.23, thay các giá trị độ cứng này kết hợp với đặc trưng hình học của lõi
cứng và tải trọng ngang vào chương trình AC-2 sẽ xác định được chuyển vị của
hệ kết cấu một cách nhanh chóng. Mặt khác, theo [42], [43], quy định khi thiết
kế kết cấu phải đảm bảo độ cứng hệ kết cấu với chuyển vị đỉnh không vượt quá
chuyển vị giới hạn, do vậy có thể xác định được kích thước tiết diện lõi cứng
nhanh chóng trong giai đoạn thiết kế sơ bộ công trình
20
3.2.6. Kiểm tra biểu thức thực nghiệm với kết cấu cùng dạng.
Xét các kết cấu 10 tầng, 12 tầng, 15 tầng, 16 tầng, 18 tầng và 20 tầng
có mặt bằng đối xứng gồm lõi cứng, cột và sàn phẳng như hình 3.31, lõi cứng
dày 0,3 m, chiều rộng khoảng hở mặt cắt tiết diện lõi cứng 1a = 4 m, cột hình
vuông kích thước mỗi cạnh là 0,85 m, kích thước hình học lõi cứng, cột và sàn
các tầng giống nhau, , bề dày sàn t = 0,21 m. Vật liệu có mô đun đàn hồi E =
2,9 x 910 2/mdaN , hệ số Poison  = 0,2, tải trọng gió tác động theo trục X
và Y với oW = 95 2/mdaN .
Hình 3.31: Mặt bằng kết cấu 10 tầng, 12 tầng, 15 tầng, 16 tầng, 18 tầng và 20
tầng gồm lõi cứng, sàn, cột (có 10 cột) và hệ trục tọa độ OXYZ.
- Áp dụng công thức thực nghiệm (3.4), (3.5), (3.6) để xác định giá trị XiC ,
Y
iC , ZZiC (i = 1→n) đối với kết cấu 12 tầng.
+ Xác định XiC (i = 1→n): ta có XnC )0( = 420000 daN/m, cn = 8 cột, t = 0,21 m,
X
ua )0( = 194,12 )/( 5mdaN Xu1 = 298000 daN/m (giá trị nội suy tuyến tính ở
bảng 3.25), Xu2 = 0,808 (giá trị nội suy tuyến tính ở bảng 3.26), )0(ycI = 916,94
4m và 0t = 0,22 m, ycI = 627,481 4m . Thay các giá trị này vào công thức
21
(3.4) ta xác định được XiC (i = 1→n) = 674682 daN/m.
+ Xác định ZZiC (i = 1→n): ta có ZZnC )0( = 2800000 (daNm/rad), cn = 8 cột, t =
0,21 m, )0(xoa = 726,65 )/( 3radmdaN , xo1 = 1950000 (daNm/rad) (giá trị
nội suy tuyến tính ở bảng 3.27), xo2 = 1,309 (giá trị nội suy tuyến tính ở bảng
3.28), )0(xocI = 1837,06 4m và 0t = 0,22 m, xocI = 1404,680 4m . Thay các giá
trị này vào công thức (3.5) ta xác định được ZZiC (i = 1→n) = 4357518
(daNm/rad).
+ Xác định YiC (i = 1→n): ta có YnC )0( = 255000 daN/m, cn = 8 cột, t = 0,21 m,
Y
ua )0( = 72,53 )/( 5mdaN Yu1 = 131000 daN/m (giá trị nội suy tuyến tính ở
bảng 3.29), Yu2 = 1,216 (giá trị nội suy tuyến tính ở bảng 3.30), )0(xcI = 920,11
4m và 0t = 0,22 m, xcI = 777,199 4m Thay các giá trị này vào công thức (3.6)
ta sẽ có YiC (i = 1→n) = 373968 daN/m.
Đối với các kết cấu 10, 15, 16, 18 và 20 tầng thực hiện tương tự với trình tự
tính toán tương tự kết cấu 12 tầng.
Xác định chuyển vị của hệ kết cấu bằng phần mềm ETABS và chương
trình AC-2, sau đó so sánh sự chênh lệch chuyển vị đỉnh giữa phần mềm
ETABS và chương trình AC-2.
Bảng 3.31: Bảng kết quả chênh lệch (%) giữa AC-2 và ETABS về chuyển vị
đỉnh kết cấu 10, 12, 15, 16, 18 và 20 tầng.
ETABS AC-2 Chênh lệch (%)
Stt
Số
tầng
X
nU
(m)
ZZ
n
(rad)
Y
nU
 (m)
X
nU
(m)
ZZ
n
(rad)
Y
nU
 (m)
X
nU
(%)
ZZ
n
(%)
Y
nU
(%)
1 10 0,00812 0,00071 0,00310 0,00788 0,00065 0,00308 2,97 9,27 0,72
2 12 0,01512 0,00130 0,00619 0,01389 0,00110 0,00597 8,11 15,90 3,54
3 15 0,03166 0,00262 0,01447 0,03046 0,00239 0,01429 3,78 8,97 1,28
4 16 0,03903 0,00318 0,01849 0,03658 0,00283 0,01818 6,29 11,06 1,67
5 18 0,05696 0,00449 0,02883 0,05233 0,00391 0,02802 8,13 12,91 2,81
6 20 0,07953 0,00605 0,04275 0,07527 0,00556 0,04191 5,35 8,20 1,96
22
Nhận xét:
- Theo bảng 3.31, với các kết cấu 10 tầng, 12 tầng, 15 tầng, 16 tầng, 18 tầng và
20 tầng có mặt bằng như hình 3.31 thì kết quả tính toán giữa phần mềm
ETABS và chương trình AC-2 có chênh lệch lớn nhất về chuyển vị đỉnh với
X
nU là 8,13 %, ZZn là 15,9 %, YnU là 3,54 %.
- Với các kết quả chênh lệch % về chuyển vị đỉnh giữa phần mềm ETABS và
chương trình AC-2 như trên, việc sử dụng các giả thiết về sơ đồ tính thanh
công xôn xấp xỉ thể hiện ở mục 1.7 có thể chấp nhận được và có thể sử dụng
công thức thực nghiệm (3.4), (3.5), (3.6) kết hợp chương trình AC-2 để phân
tích kết cấu lõi cứng cùng dạng, có liên kết cứng giữa các phần tử thanh, có các
liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và chuyển vị xoay
quanh trục Z, trong giai đoạn thiết kế sơ bộ công trình.
- Kết quả tính toán chuyển vị tại đỉnh của sơ đồ thanh công xôn xấp xỉ tính
bằng AC-2 có giá trị nhỏ hơn ETABS nên khi chọn kích thước tiết diện lõi
cứng trong giai đoạn sơ bộ, người thiết kế cần lưu ý thêm để có biện pháp xử lý
cho thích hợp.
3.3. Nhận xét chương 3.
- Đã khảo sát sự ảnh hưởng của một số yếu tố đến chuyển vị đỉnh kết
cấu nhiều tầng có sơ đồ giằng, có mặt bằng đối xứng, khi chịu tải trọng ngang
gồm: số tầng, bề dày lõi cứng, chiều cao lanh tô cửa lõi cứng, chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng, số lượng cột, mô men quán tính các cột,
bề dày sàn, mô đun đàn hồi của vật liệu. Kết quả khảo sát một số yếu tố với
một số dạng nhà cho thấy có thể xác định quy luật, giúp điều chỉnh nhanh các
yếu tố này trong giai đoạn thiết kế sơ bộ công trình.
-Với lõi cứng tiết diện hở thì chiều rộng khoảng hở mặt cắt tiết diện lõi
cứng 1a là yếu tố quan trọng nhất ảnh hưởng đến độ cứng lõi cứng, bởi vì nó
gây ra độ lệch tâm giữa tâm cứng và tâm hình học, chính độ lệch tâm này gây
ra hiện tượng xoắn và làm mất tính đối xứng, dẫn đến lõi cứng tiết diện hở có
23
xu hướng bị biến dạng xung quanh chu vi và mất tính chất phẳng của tiết diện
tại vị trí hai bên mép khoảng hở lõi cứng, bắt sàn cùng làm việc với lõi cứng.
- Đã xây dựng biểu thức thực nghiệm kết hợp các bảng tra xác định độ
cứng của liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và độ cứng
của liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z với một số dạng kết
cấu nhiều tầng, có sơ đồ giằng, chịu tải trọng ngang để lựa chọn kích thước tiết
diện lõi cứng gần đúng trong giai đoạn thiết kế sơ bộ công trình.
KẾT LUẬN CHUNG
Đề tài “Phân tích sự làm việc không gian của kết cấu lõi cứng nhà
nhiều tầng chịu tải trọng ngang tĩnh” đã đạt được các kết quả sau đây:
- Từ sơ đồ tính không gian phức tạp (gồm lõi cứng, cột và sàn) đã mô hình hóa
thành một sơ đồ thanh công xôn xấp xỉ có kể đến ảnh hưởng của sàn, trong đó
lõi cứng mô hình bằng các phần tử thanh liên kết ngàm vào móng, có liên kết
nửa cứng giữa các phần tử thanh, cột và sàn liên kết với lõi cứng bằng các liên
kết đàn hồi.
- Đã xây dựng chương trình AC-1, AC-2 làm công cụ để nghiên cứu, phân tích
kết cấu lõi cứng nhiều tầng.
-Đã khảo sát sự ảnh hưởng của một số yếu tố đến chuyển vị đỉnh trong kết cấu
nhiều tầng có sơ đồ giằng, có mặt bằng đối xứng, khi chịu tải trọng ngang,
gồm: số tầng, bề dày lõi cứng, chiều cao lanh tô cửa lõi cứng, chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng, số lượng cột, mô men quán tính các cột,
bề dày sàn, mô đun đàn hồi của vật liệu. Trong các thông số này thì chiều rộng
khoảng hở mặt cắt tiết diện lõi cứng 1a là yếu tố ảnh hưởng nhiều nhất đến độ
cứng lõi cứng.
- Đã xây dựng biểu thức thực nghiệm kết hợp các bảng tra xác định độ cứng
của liên kết đàn hồi ngăn cản chuyển vị ngang theo trục X, Y và độ cứng của
liên kết đàn hồi ngăn cản chuyển vị xoay quanh trục Z với một số dạng kết cấu
24
nhiều tầng, có sơ đồ giằng, chịu tải trọng ngang để lựa chọn kích thước tiết
diện lõi cứng gần đúng trong giai đoạn thiết kế sơ bộ công trình.
CÁC KIẾN NGHỊ VÀ HƯỚNG NGHIÊN CỨU TIẾP THEO
Trên cơ sở các kết quả đã đạt được ở các phần trên, đề tài của luận án
có thể tiếp tục nghiên cứu theo các hướng sau:
1. Nghiên cứu về lý thuyết và thực nghiệm về liên kết giữa lõi cứng và các bộ
phận kết cấu khác trong nhà nhiều tầng theo công nghệ xây dựng bê tông toàn
khối và lắp ghép.
2. Nghiên cứu về lý thuyết và thực nghiệm về độ mềm liên kết nửa cứng giữa
các phần tử lõi cứng trong nhà nhiều tầng theo công nghệ xây dựng lắp ghép.
3. Nghiên cứu biểu thức thực nghiệm xác định độ cứng liên kết đàn hồi có kể
đến ảnh hưởng của khoảng cách từ cột đến tâm cứng kết cấu với các dạng mặt
bằng kết cấu khác nhau.
4. Nghiên cứu mô hình phân tích động lực học nhà cao tầng và nhà siêu cao
tầng để hạn chế chuyển vị ngang đỉnh, biên độ và gia tốc dao động khi chịu tải
trọng động với các nhà có mặt bằng đối xứng, không đối xứng, có lõi cứng
nhiều khoang.
25
DANH MỤC CÁC CÔNG TRÌNH NGHIÊN CỨU CỦA TÁC GIẢ
1. Nguyễn Văn Hùng, Ninh Đức Thuận (2005) ,“Tiếp cận phân tích khả năng
chịu xoắn của lõi cứng trong nhà nhiều tầng”, Tuyển tập báo cáo hội
nghị khoa học công nghệ lần thứ 14 Đại học Xây Dựng, (5), tr. 75-80.
2. Nguyễn Văn Hùng, Ninh Đức Thuận (2006), “Đánh giá sự làm việc đồng
 thời của sàn và lõi cứng trong nhà nhiều tầng khi chịu tải trọng ngang
 thông qua việc xét chuyển vị xoay ”, Tạp chí Xây dựng – Bộ Xây
 Dựng, (2), tr. 28-30.
3. Nguyễn Văn Hùng, Ninh Đức Thuận (2007), “Ứng dụng hiệu ứng đốt tre để
đánh giá sự ảnh hưởng của sàn đến kết cấu lõi cứng thi công bằng
 biện pháp cốp pha trượt trong nhà nhiều tầng”, Tạp chí Xây dựng –
Bộ Xây Dựng, (5), tr. 33-34.
4. Nguyễn Văn Hùng, Ninh Đức Thuận (2011), “Một mô hình tính toán liên kết
 kết cấu lõi cứng nhà nhiều tầng chịu tải trọng ngang”, Tạp chí Xây
 dựng – Bộ Xây Dựng, (1), tr. 51-56.
5. Nguyễn Văn Hùng, Ninh Đức Thuận (2016), “So sánh kết quả phân tích kết
cấu lõi cứng nhà nhiều tầng có sơ đồ giằng chịu tải trọng ngang theo
phương pháp giải tích và phương pháp phần tử hữu hạn”, Tạp chí Xây
dựng – Bộ Xây Dựng, (1), tr. 78-82.

File đính kèm:

  • pdftom_tat_luan_an_phan_tich_su_lam_viec_khong_gian_cua_ket_cau.pdf