Nguyên lí ngôn ngữ lập trình - Chương IV: Phân tích cú pháp
Mỗi ngôn ngữ lập trình đều có các quy tắc diễn tả cấu trúc cú pháp của các chương
trình có định dạng đúng. Các cấu trúc cú pháp này được mô tả bởi văn phạm phi ngữ
cảnh. Phần đầu của chương nhắc lại khái niệm văn phạm phi ngữ cảnh, cách tìm một
văn phạm tương đương không còn đệ quy trái và mơ hồ. Phần lớn nội dung của
chương trình bày các phương pháp phân tích cú pháp thường được sử dụng trong các
trình biên dịch: Phân tích cú pháp từ trên xuống (Top down) và Phân tích cú pháp từ
dưới lên (Bottom up). Các chương trình nguồn có thể chứa các lỗi cú pháp. Trong quá
trình phân tích cú pháp chương trình nguồn, sẽ rất bất tiện nếu chương trình dừng và
thông báo lỗi khi gặp lỗi đầu tiên. Vì thế cần phải có kỹ thuật để vượt qua các lỗi cú
pháp để tiếp tục quá trình dịch - Các kỹ thuật phục hồi lỗi. Từ văn phạm đặc tả ngôn
ngữ lập trình và lựa chọn phương pháp phân tích cú pháp phù hợp, sinh viên có thể tự
mình xây dựng một bộ phân tích cú pháp. Phần còn lại của chương giới thiệu công cụ
Yacc. Sinh viên có thể sử dụng công cụ này để tạo bộ phân tích cú pháp thay vì phải tự
ài đặt. Mô tả chi tiết về Yacc được tìm thấy ở phần phụ lục B
Tóm tắt nội dung tài liệu: Nguyên lí ngôn ngữ lập trình - Chương IV: Phân tích cú pháp
CHƯƠNG IV PHÂN TÍCH CÚ PHÁP Nội dung chính: Mỗi ngôn ngữ lập trình đều có các quy tắc diễn tả cấu trúc cú pháp của các chương trình có định dạng đúng. Các cấu trúc cú pháp này được mô tả bởi văn phạm phi ngữ cảnh. Phần đầu của chương nhắc lại khái niệm văn phạm phi ngữ cảnh, cách tìm một văn phạm tương đương không còn đệ quy trái và mơ hồ. Phần lớn nội dung của chương trình bày các phương pháp phân tích cú pháp thường được sử dụng trong các trình biên dịch: Phân tích cú pháp từ trên xuống (Top down) và Phân tích cú pháp từ dưới lên (Bottom up). Các chương trình nguồn có thể chứa các lỗi cú pháp. Trong quá trình phân tích cú pháp chương trình nguồn, sẽ rất bất tiện nếu chương trình dừng và thông báo lỗi khi gặp lỗi đầu tiên. Vì thế cần phải có kỹ thuật để vượt qua các lỗi cú pháp để tiếp tục quá trình dịch - Các kỹ thuật phục hồi lỗi. Từ văn phạm đặc tả ngôn ngữ lập trình và lựa chọn phương pháp phân tích cú pháp phù hợp, sinh viên có thể tự mình xây dựng một bộ phân tích cú pháp. Phần còn lại của chương giới thiệu công cụ Yacc. Sinh viên có thể sử dụng công cụ này để tạo bộ phân tích cú pháp thay vì phải tự cài đặt. Mô tả chi tiết về Yacc được tìm thấy ở phần phụ lục B. Mục tiêu cần đạt: Sau khi học xong chương này, sinh viên phải nắm được: • Các phương pháp phân tích cú pháp và các chiến lược phục hồi lỗi. • Cách tự cài đặt một bộ phân tích cú pháp từ một văn phạm phi ngữ cảnh xác định. • Cách sử dụng công cụ Yacc để sinh ra bộ phân tích cú pháp. Kiến thức cơ bản: Sinh viên phải có các kiến thức về: • Văn phạm phi ngữ cảnh (Context Free Grammar – CFG), Automat đẩy xuống (Pushdown Automata – PDA). • Cách biến đổi từ một CFG về một PDA. Tài liệu tham khảo: [1] Automata and Formal Language. An Introduction – Dean Kelley – Prentice Hall, Englewood Cliffs, New Jersey 07632. [2] Compilers : Principles, Technique and Tools - Alfred V.Aho, Jeffrey D.Ullman - Addison - Wesley Publishing Company, 1986. [3] Compiler Design – Reinhard Wilhelm, Dieter Maurer - Addison - Wesley Publishing Company, 1996. [4] Design of Compilers : Techniques of Programming Language Translation - Karen A. Lemone - CRC Press, Inc, 1992. [5] Modern Compiler Implementation in C - Andrew W. Appel - Cambridge University Press, 1997. 65 I. VAI TRÒ CỦA BỘ PHÂN TÍCH CÚ PHÁP 1. Vai trò của bộ phân tích cú pháp Bộ phân tích cú pháp nhận chuỗi các token từ bộ phân tích từ vựng và xác nhận rằng chuỗi này có thể được sinh ra từ văn phạm của ngôn ngữ nguồn bằng cách tạo ra cây phân tích cú pháp cho chuỗi. Bộ phân tích cú pháp cũng có cơ chế ghi nhận các lỗi cú pháp theo một phương thức linh hoạt và có khả năng phục hồi được các lỗi thường gặp để có thể tiếp tục xử lý phần còn lại của chuỗi nhập. Chương trình nguồn token Cây phân tích cú pháp Bộ phân tích từ vựng Bộ phân tích cú pháp Phần còn lại của front end Lấy token tiếp Biểu diễn trung gian Bảng ký hiệu Hình 4.1 - Vị trí của bộ phân tích cú pháp trong mô hình trình biên dịch 2. Xử lý lỗi cú pháp Chương trình nguồn có thể chứa các lỗi ở nhiều mức độ khác nhau: - Lỗi từ vựng như danh biểu, từ khóa, toán tử viết không đúng. - Lỗi cú pháp như ghi một biểu thức toán học với các dấu ngoặc đóng và mở không cân bằng. - Lỗi ngữ nghĩa như một toán tử áp dụng vào một toán hạng không tương thích. - Lỗi logic như thực hiện một lời gọi đệ qui không thể kết thúc. Phần lớn việc phát hiện và phục hồi lỗi trong một trình biện dịch tập trung vào giai đọan phân tích cú pháp. Vì thế, bộ xử lý lỗi (error handler) trong quá trình phân tích cú pháp phải đạt mục đích sau: Ghi nhận và thông báo lỗi một cách rõ ràng và chính xác. Phục hồi lỗi một cách nhanh chóng để có thể xác định các lỗi tiếp theo. Không làm chậm tiến trình của một chương trình đúng. 3. Các chiến lược phục hồi lỗi Phục hồi lỗi là kỹ thuật vượt qua các lỗi để tiếp tục quá trình dịch. Nhiều chiến lược phục hồi lỗi có thể dùng trong bộ phân tích cú pháp. Mặc dù không có chiến lược nào được chấp nhận hoàn toàn, nhưng một số trong chúng đã được áp dụng rộng rãi. Ở đây, chúng ta giới thiệu một số chiến lược : a. Phương thức "hoảng sợ" (panic mode recovery): Ðây là phương pháp đơn giản nhất cho cài đặt và có thể dùng cho hầu hết các phương pháp phân tích. Khi một 66 lỗi được phát hiện thì bộ phân tích cú pháp bỏ qua từng ký hiệu một cho đến khi tìm thấy một tập hợp được chỉ định của các token đồng bộ (synchronizing tokens), các token đồng bộ thường là dấu chấm phẩy (;) hoặc end. b. Chiến lược mức ngữ đoạn (phrase_level recovery): Khi phát hiện một lỗi, bộ phân tích cú pháp có thể thực hiện sự hiệu chỉnh cục bộ trên phần còn lại của dòng nhập. Cụ thể là thay thế phần đầu còn lại bằng một chuỗi ký tự có thể tiếp tục. Chẳng hạn, dấu phẩy (,) bởi dấu chấm phẩy (;), xóa một dấu phẩy lạ hoặc thêm vào một dấu chấm phẩy. c. Chiến lược dùng các luật sinh sửa lỗi (error production): Thêm vào văn phạm của ngôn ngữ những luật sinh lỗi và sử dụng văn phạm này để xây dựng bộ phân tích cú pháp, chúng ta có thể sinh ra bộ đoán lỗi thích hợp để chỉ ra cấu trúc lỗi được nhận biết trong dòng nhập. d. Chiến lược hiệu chỉnh toàn cục (global correction): Một cách lý tưởng là trình biên dịch tạo ra một số thay đổi trong khi xử lý một lỗi. Có những giải thuật để lựa chọn một số tối thiểu các thay đổi để đạt được một hiệu chỉnh có chi phí toàn cục nhỏ nhất. Cho một chuỗi nhập có lỗi x và một văn phạm G, các giải thuật này sẽ tìm được một cây phân tích cú pháp cho chuỗi y mà số lượng các thao tác chèn, xóa và thay đổi token cần thiết để chuyển x thành y là nhỏ nhất. Nói chung, hiện nay kỹ thuật này vẫn còn ở dạng nghiên cứu lý thuyết. II. BIẾN ÐỔI VĂN PHẠM PHI NGỮ CẢNH Nhiều ngôn ngữ lập trình có cấu trúc đệ quy mà nó có thể được định nghĩa bằng các văn phạm phi ngữ cảnh (context-free grammar) G với 4 thành phần G (V, T, P, S), trong đó: • V : là tập hữu hạn các ký hiệu chưa kết thúc hay các biến (variables) • T : là tập hữu hạn các ký hiệu kết thúc (terminals). • P : là tập luật sinh của văn phạm (productions). • S ∈ V: là ký hiệu bắt đầu của văn phạm (start symbol). Ví dụ 4.1: Văn phạm với các luật sinh sau cho phép định nghĩa các biểu thức số học đơn giản (với E là một biểu thức expression) : E → E A E ⏐ (E) ⏐ - E ⏐ id A → + ⏐ - ⏐ * ⏐ / ⏐ ↑ 1. Cây phân tích cú pháp và dẫn xuất Cây phân tích cú pháp có thể được xem như một dạng biểu diễn hình ảnh của một dẫn xuất. Ta nói rằng αAβ dẫn xuất ra αγβ (ký hiệu: αAβ ⇒ αγβ) nếu A → γ là một luật sinh, α và β là các chuỗi tùy ý các ký hiệu văn phạm. Nếu α1 ⇒ α2 ⇒ .. .. ⇒ αn ta nói α1 dẫn xuất ra (suy ra) αn Ký hiệu ⇒ : dẫn xuất ra qua 1 bước ⇒* : dẫn xuất ra qua 0 hoặc nhiều bước. 67 ⇒ + : dẫn xuất ra qua 1 hoặc nhiều bước. Ta có tính chất: 1. α ⇒* α với ∀α 2. α ⇒* β và β ⇒* γ thì α ⇒* γ Cho một văn phạm G với ký hiệu bắt đầu S. Ta dùng quan hệ ⇒+ để định nghĩa L(G) một ngôn ngữ được sinh ra bởi G. Chuỗi trong L(G) có thể chỉ chứa một ký hiệu kết thúc của G. Chuỗi các ký hiệu kết thúc w thuộc L(G) nếu và chỉ nếu S ⇒+ w, chuỗi w được gọi là một câu của G. Một ngôn ngữ được sinh ra bởi một văn phạm gọi là ngôn ngữ phi ngữ cảnh. Nếu hai văn phạm cùng sinh ra cùng một ngôn ngữ thì chúng được gọi là hai văn phạm tương đương. Nếu S ⇒* α, trong đó α có thể chứa một ký hiệu chưa kết thúc thì ta nói rằng α là một dạng câu (sentential form) của G. Một câu là một dạng câu có chứa toàn các ký hiệu kết thúc. Một cây phân tích cú pháp có thể xem như một biểu diễn đồ thị cho một dẫn xuất. Ðể hiểu được bộ phân tích cú pháp làm việc ta cần xét dẫn xuất trong đó chỉ có ký hiệu chưa kết thúc trái nhất trong bất kỳ dạng câu nào được thay thế tại mỗi bước, dẫn xuất như vậy được gọi là trái nhất. Nếu α ⇒ β trong đó ký hiệu chưa kết thúc trái nhất trong α được thay thế, ta viết α ⇒* lm β Nếu S ⇒* lm α ta nói α là dạng câu trái của văn phạm. Tương tự, ta có dẫn xuất phải nhất - còn gọi là dẫn xuất chính tắc (canonical derivations) Ví dụ 4.2: Cây phân tích cú pháp cho chuỗi nhập : - (id + id) sinh từ văn phạm trong ví dụ 4.1 E E E - ( ) + E E idid Hình 4.2 - Minh họa một cây phân tích cú pháp Ðể thấy mối quan hệ giữa cây phân tích cú pháp và dẫn xuất, ta xét một dẫn xuất : α1 ⇒ α2⇒ .. .. ⇒ αn trong đó αi là một ký hiệu chưa kết thúc A. Với mỗi αi ta xây dựng một cây phân tích cú pháp. Ví dụ với dẫn xuất: E ⇒ -E ⇒ - (E) ⇒ - (E + E) ⇒ - (id + E) ⇒ - (id + id) Ta có quá trình xây dựng cây phân tích cú pháp như sau : 68 E - E E ⇒ _ E E ( ) E - E E ( ) E E E + ⇒ ⇒ - E E ( ) E E E + id E E ( ) E E E + ⇒ ⇒ id id _ Hình 4.3 - Xây dựng cây phân tích cú pháp từ dẫn xuất 2. Loại bỏ sự mơ hồ Một văn phạm tạo ra nhiều hơn một cây phân tích cú pháp cho cùng một chuỗi nhập được gọi là văn phạm mơ hồ. Nếu một văn phạm là mơ hồ, ta không thể xác định được cây phân tích cú pháp nào sẽ được chọn. Vì thế, ta phải viết lại một văn phạm nhằm tránh sự mơ hồ của nó. Một ví dụ, chúng ta sẽ loại bỏ sự mơ hồ trong văn phạm sau : Stmt → if expr then stmt ⏐ if expr then stmt else stmt ⏐ other Ðây là một văn phạm mơ hồ vì câu nhập if E1 then if E2 then S1 else S2 sẽ có hai cây phân tích cú pháp : Stmt if expr then Stmt if expr then Stmt elsem Stmt E2 S1 S2 E1 69 Hình 4.4 - Hai cây phân tích cú pháp cho một câu nhập Ðể tránh sự mơ hồ này ta đưa ra nguyên tắc "Khớp mỗi else với một then chưa khớp gần nhất trước đó". Với qui tắc này, ta viết lại văn phạm trên như sau : Stmt → matched_stmt | unmatched_stmt matched_stmt → if expr then matched_stmt else matched_stmt ⏐ other unmatched_stmt → if expr then Stmt ⏐ if expr then matched_stmt else unmatched_stmt Văn phạm tương đương này sinh ra tập chuỗi giống như văn phạm mơ hồ trên, nhưng nó chỉ có một cách dẫn xuất ra cây phân tích cú pháp cho từng chuỗi nhập. 3. Loại bỏ đệ qui trái Một văn phạm là đệ qui trái (left recursive) nếu nó có một ký hiệu chưa kết thúc A sao cho có một dẫn xuất A ⇒+ Aα, với α là một chuỗi nào đó. Các phương pháp phân tích từ trên xuống không thể nào xử lý văn phạm đệ qui trái, do đó cần phải dùng một cơ chế biến đổi tương đương để loại bỏ các đệ qui trái. Ðệ qui trái có hai loại : Loại trực tiếp: Dạng A → Aα Loại gián tiếp: A ⇒i Aα với i ≥ 2 Xét văn phạm như sau: S → Aa | b A→ Ac | Sd | ε Biến S cũng là biến đệ qui trái vì S ⇒ Aa ⇒ Sda, nhưng đây không phải là đệ qui trái trực tiếp. . Với đệ qui trái trực tiếp: Luật sinh có dạng: A → Aα1 | Aα2 | ... | Aαm | β1 | β2 | ... | βn Sẽ thay thế bởi : A → β1A’ | β2A’ | ... | βnA’ A' → α1A'| α2A' | ... | αm A' | ε if expr then Stmt elsem S2E1 expr Stmt Stmt E2 S1 if then Stmt . Với đệ qui trái gián tiếp (và nói chung là đệ qui trái, ta sử dụng giải thuật sau) 70 Giải thuật 4.1: Loại bỏ đệ qui trái Input: Văn phạm không tuần hoàn và không có các luật sinh ε (nghĩa là văn phạm không chứa các dạng A ⇒ +A và A→ ε) Output: Văn phạm tương đương không đệ qui trái Phương pháp: 1. Sắp xếp các ký hiệu không kết thúc theo thứ tự A1, A2, ..., An 2. For i:=1 to n do Begin for j:=1 to i -1 do begin Thay luật sinh dạng Ai → Ajγ bởi luật sinh Ai→ δ1γ | δ2γ | ... | δkγ trong đó Aj → δ1 | δ2 | ... | δk là tất cả các Ai luật sinh hiện tại; end; Loại bỏ đệ qui trái trực tiếp trong số các Ai luật sinh; End; Ví dụ 4.3: Áp dụng thuật toán trên cho văn phạm ví dụ trên. Về lý thuyết, thuật toán 4.1 không bảo đảm sẽ hoạt động được trong trường hợp văn phạm có chứa các luật sinh ε, nhưng trong trường hợp này luật sinh A → ε rõ ràng là "vô hại". 1. Sắp xếp các ký hiệu chưa kết thúc theo thứ tự S, A. 2. Với i = 1, không có đệ qui trái trực tiếp nên không có điều gì xảy ra. Với i = 2, thay các S - luật sinh vào A → Sd được: A→ Ac | Aad | bd | ε Loại bỏ đệ qui trái trực tiếp cho các A luật sinh, ta được : S→ Aa | b A→ bdA' A'→ cA' | adA | ε 4. Tạo ra yếu tố trái Tạo ra yếu tố trái (left factoring) là một phép biến đổi văn phạm rất có ích để có được một văn phạm thuận tiện cho việc phân tích dự đoán. Ý tưởng cơ bản là khi không rõ luật sinh nào trong hai luật sinh khả triển có thể dùng để khai triển một ký hiệu chưa kết thúc A, chúng ta có thể viết lại các A - luật sinh nhằm "hoãn" lại việc quyết định cho đến khi thấy đủ nguyên liệu cho một lựa chọn đúng. Xét văn phạm cho câu lệnh if: stmt → if expr then stmt else stmt | if expr then stmt 71 Khi gặp token if, chúng ta không thể quyết định ngay cần chọn luật sinh nào để triển khai cho stmt. Ðể giải quyết vấn đề này, một cách tổng quát, khi có luật sinh dạng A → αβ1 | αβ2, ta biến đổi luật sinh thành dạng : A → αA' A'→ β1 | β2 Giải thuật 4.2 : Tạo yếu tố trái cho văn phạm Input: Văn phạm G Output: Văn phạm tương đương với yếu tố trái. Phương pháp: Với mỗi ký hiệu chưa kết thúc A, có các ký hiệu dẫn đầu các vế phải giống nhau, ta tìm một chuỗi α là chuỗi có độ dài lớn nhất chung cho tất cả các vế phải (α là yếu tố trái). Giả sử A → αβ1 | αβ2 | ... | αβn | γ, trong đó γ không có chuỗi dẫn đầu chung với các vế phải khác. Ta biến đổi luật sinh thành : A → αA' | γ A'→ β1 | β2 | ... | βn Với A' là ký hiệu chưa kết thúc mới. Áp dụng lặp đi lặp lại phép biến đổi này cho đến khi không còn hai khả triển nào cho một ký hiệu chưa kết thúc có một tiền tố chung. Ví dụ 4.4: Áp dụng thuật toán 4.2 cho văn phạm sau: S → i E t S | i E t S eS | α E → b Ta có văn phạm tương đương có chứa yếu tố trái như sau : S → i E t S S' | α S' → eS | ε E → b III. PHÂN TÍCH CÚ PHÁP TỪ TRÊN XUỐNG Trong mục này, chúng ta giới thiệu các ý niệm cơ bản về phương pháp phân tích cú pháp từ trên xuống (Top Down Parsing) và trình bày một dạng không quay lui hiệu quả của phương pháp phân tích từ trên xuống, gọi là phương pháp phân tích dự đoán (predictive parser). Chúng ta định nghĩa một lớp văn phạm LL(1) (viết tắt của Left-to-right parse, Leftmost-derivation, 1-symbol lockahead ), trong đó phân tích dự đoán có thể xây dựng một cách tự động. 1. Phân tích cú pháp đệ qui lùi (Recursive Descent Parsing) Phân tích cú pháp từ trên xuống có thể được xem như một nỗ lực tìm kiếm một dẫn xuất trái nhất cho chuỗi nhập. Nó cũng có thể xem như một nỗ lực xây dựng cây phân tích cú pháp bắt đầu từ nút gốc và phát sinh dần xuống lá. Một dạng tổng quát của kỹ thuật phân tích từ trên xuống, gọi là phân tích cú pháp đệ quy lùi, có thể quay lui để 72 quét lại chuỗi nhập. Tuy nhiên, dạng này thường rất ít gặp. Lý do là với các kết cấu ngôn ngữ lập trình, chúng ta hiếm khi dùng đến nó. 2. Bộ phân tích cú pháp dự đoán (Predictive Parser) Trong nhiều trường hợp, bằng cách viết văn phạm một cách cẩn thận, loại bỏ đệ qui trái ra khỏi văn ... dụng độ ưu tiên và tính kết hợp của các toán tử để giải quyết đụng độ. Xét văn phạm của biểu thức số học với hai toán tử + và * : E Æ E + E | E * E | (E) |id (1) Ðây là một văn phạm mơ hồ vì nó không xác định độ ưu tiên và tính kết hợp của các tóan tử + và *. Trong khi đó ta có văn phạm tương đương không mơ hồ cho biểu thức có dạng như sau: 102 E Æ E + T | T T Æ T * F | F (2) F Æ (E) | id Văn phạm này xác định rằng + có độ ưu tiên thấp hơn * và cả hai toán tử đều kết hợp trái. Tuy nhiên có 2 lý do để chúng ta sử dụng văn phạm (1) chứ không phải là (2): 1. Dễ dàng thay đổi tính kết hợp và độ ưu tiên của + và * mà không phá hủy các luật sinh và số các trạng thái của bộ phân tích (như ta sẽ thấy sau này). 2. Bộ phân tích cho văn phạm (2) sẽ mất thời gian thu gọn bởi các luật sinh E Æ T và T Æ F. Hai luật sinh này không nói lên được tính kết hợp và độ ưu tiên. Nhưng với văn phạm (1) thì làm thế nào để tránh sự đụng độ? Trước hết chúng ta hãy thành lập bộ sưu tập C các tập mục LR(0) của văn phạm tăng cường của nó. I0: E'→ • E E → • E + E E → • E * E E → • (E) E → • id Goto(I0,E) I1: E'→ E • E → E • + E E → E • * E Goto(I0,() I2: E → (• E) E → • E + E E → • E* E E → • (E) E → • id Goto(I0,id) I3: E → id• Goto(I1,+ ) I4: E → E + • E E → • E + E E → • E * E E → • ( E) Goto(I2,E) I6: E'→ (E •) E → E • + E E → E • * E Goto(I2,() ≡ I2 Goto(I2,id) ≡ I3 Goto(I4,E) I7: E → E + E • E → E • + E E → E • * E Goto(I4,( ) ≡ I2 Goto(I4,id) ≡ I3 Goto(I5,E) I8: E → E * E • E → E • + E E → E • * E Goto(I5,() ≡ I2 Goto(I5,id) ≡ I3 Goto(I6,)) I9: E → (E) • Goto(I6,+) ≡ I4 Goto(I6,*) ≡ I5 103 E → • id Goto(I1,*) I5: E → E * • E E → • E + E E → • E * E E → • ( E) E → • id Goto(I7,+) ≡ I4 Goto(I7,*) ≡ I5 Goto(I8,+) ≡ I4 Goto(I8,*) ≡ I5 Bảng phân tích SLR đụng độ được xây dựng như sau : Action Goto Trạng thái id + * ( ) $ E 0 s3 s2 1 1 s4 s5 acc 2 s3 6 3 r4 r4 r4 r4 4 s3 s2 7 5 s3 s2 8 6 s4 s5 s9 7 s4 / r1 s5 / r1 r1 r1 8 s4 / r2 s5 / r2 r2 r2 9 r3 r3 r3 r3 Hình 4.16 - Bảng phân tích cú pháp SLR đụng độ Nhìn vào bảng SLR trong hình trên, ta thấy có sụ đụng độ tại action [7, +] và action [7,*]; action [8, +] và action [8,*]. Chúng ta sẽ giải quyết sự đụng độ này bằng quy tắc kết hợp và độ ưu tiên của các toán tử. Xét chuỗi nhập id + id * id Stack Input Output 0 0 id 3 0 E 1 0 E 1 + 4 0 E 1 + 4 id 3 0 E 1 + 4 E 7 id + id * id $ + id * id $ + id * id $ id * id $ * id $ * id $ Shift s3 Reduce by E Æ id Shift s4 Shift s3 Reduce by E Æ id 104 Bây giờ đến ô đụng độ action[7, *] nên lấy r1 hay s5? Lúc này chúng ta đã phân tích qua phần chuỗi id * id. Nếu ta chọn r1 tức là thu gọn bởi luật sinh E Æ E + E, có nghĩa là chúng ta đã thực hiện phép cộng trước. Do vậy nếu ta muốn tóan tử * có độ ưu tiên cao hơn + thì phải chọn s5. Nếu chuỗi nhập là id + id + id thì quá trình phân tích văn phạm dẫn đến hình trạng hiện tại là : Stack Output 0 E 1 + 4 E 7 + id $ Sẽ phải xét action [7, +] nên chọn r1 hay s4? Nếu ta chọn r1 tức là thu gọn bởi luật sinh E Æ E + E tức là + thực hiện trước hay toán tử + có kết hợp trái => action [7, +] = r1 Một cách tương tự nếu ta quy định phép * có độ ưu tiên cao hơn + và phép * kết hợp trái thì action [8, *] = r2 vì * kết hợp trái (xét chuỗi id * id * id). Action [8,+] = r2 vì toán tử * có độ ưu tiên cao hơn + (trường hợp xét chuỗi id * id + id) Sau khi đã giải quyết được sự đụng độ đó ta có được bảng phân tích SLR đơn giản hơn bảng phân tích của văn phạm tương đương (2) (chỉ sử dụng 10 trạng thái thay vì 12 trạng thái). Tương tự, ta có thể xây dựng bảng phân tích LR chính tắc và LALR cho văn phạm (1). 2. Giải quyết trường hợp văn phạm mơ hồ IF THEN ELSE Xét văn phạm cho lệnh điều kiện: Stmt Æ if expr then stmt else stmt | if expr then stmt | other Ðể đơn giản ta viết i thay cho if expr then, S thay cho stmt, e thay cho else và a thay cho other, ta có văn phạm viết lại như sau : S’ Æ S S Æ iS eS (1) S Æ iS (2) S Æ a (3) Họ tập hợp mục C các tập mục LR(0) là: 105 I0 : S' → • S, S → • iSeS S → • iS S → • a Goto (I0,S) I1 : S' → S • Goto (I0,i) I2 : S → i • SeS S → i • S S → • iSeS S → • iS S → • a Goto (I0,a) I3: S → a • Goto (I2, S) I4: S → iS• eS S → iS• Goto (I4,e) I5 : S → iSe• S S → • iSeS S → • iS S → • a Goto (I5,S) I6 : S → iSeS• Goto(I2,i) ≡ I2 Goto(I2,a) ≡ I3 Goto(I5,i) ≡ I2 Goto(I5,a) ≡ I3 Ta xây dựng bảng phân tích SLR đụng độ như sau: Action Goto Trạng thái i e a $ S 0 s2 s3 1 1 acc 2 s2 s3 4 3 r3 r3 4 s5| r2 r2 5 s2 s3 6 6 r1 Hình 4.17 - Bảng phân tích cú pháp LR cho văn phạm if - else Ðể giải quyết đụng độ tại action[4, e]. Trường hợp này xảy ra trong tình trạng chuỗi ký hiệu if expr then stmt nằm trong Stack và else là ký hiệu nhập hiện hành. Sử dụng nguyên tắc kết hợp mỗi else với một then chưa kết hợp gần nhất trước đó nên ta phải Shift else vào Stack để kết hợp với then nên action [4, e] = s5. Ví dụ 4.29: Với chuỗi nhập i i a e a (if expr1 then if expr2 then a1 else a2) 106 Stack Input Output 0 0 i 2 0 i 2 i 2 0 i 2 i 2 a 3 0 i 2 i 2 S 4 0 i 2 i 2 S 4 e 5 0 i 2 i 2 S 4 e 5 a 3 0 i 2 i 2 S 4 e 5 S 6 0 i 2 S 4 0 s 1 i i a e a $ i a e a $ a e a $ e a $ a $ $ $ $ $ $ Shift s2 Shift s2 Shift s3 Reduce by S Æ a Shift s5 Shift s3 Reduce by S Æ a Reduce by S Æ iS eS Reduce by S Æ iS VIII. BỘ SINH BỘ PHÂN TÍCH CÚ PHÁP Phần này trình bày cách dùng một bộ sinh bộ phân tích cú pháp (parser generator) hỗ trợ cho việc xây dựng kỳ đầu của một trình biện dịch. Một trong những bộ sinh bộ phân tích cú pháp là YACC (Yet Another Compiler - Compiler). Phiên bản đầu tiên của Yacc được S.C.Johnson tạo ra và hiện Yacc được cài đặt như một lệnh của hệ UNIX và đã được dùng để cài đặt cho hàng trăm trình biên dịch. 1. Bộ sinh thể phân tích cú pháp Yacc Đặc tả Yacc Translate.y Yacc Compiler Y.tab.c Y.tab.c C Compiler Input a.out Output a.out Hình 4.18 - Tạo một chương trình dịch input / output với Yacc Một chương trình dịch có thể được xây dựng nhờ Yacc bằng phương thức được minh họa trong hình 4.18 trên. Trước tiên, cần chuẩn bị một tập tin, chẳng hạn là translate.y, chứa một đặc tả Yacc của chương trình dịch. Lệnh yacc translate.y của hệ UNIX sẽ biến đổi tập tin translate.y thành một chương trình C có tên là y.tab.C bằng phương pháp LALR đã trình bày ở trên. Chương trình y.tab.C là một biểu diễn của bộ phân tích cú pháp LALR được viết bằng ngôn ngữ C cùng với các thủ tục C khác có thể do người sử dụng chuẩn bị. Bằng cách dịch y.tab.C cùng với thư viện ly chứa chương trình phân tích cú pháp LR nhờ lệnh cc y.tab.C - ly chúng ta thu được một chương trình đối tượng a.out thực hiện quá trình dịch được đặc tả bởi chương trình Yacc ban đầu. Nếu cần thêm các thủ tục khác, chúng có thể được biên dịch hoặc được tải vào y.tab.C giống như mọi chương trình C khác. 107 2. Ðặc tả YACC Một chương trình nguồn Yacc bao gồm 3 phần: Phần khai báo % % Các luật dịch %% Các thủ tục Ví dụ 4.30: Ðể minh họa việc chuẩn bị một chương trình nguồn Yacc, chúng ta hãy xây dựng một chương trình máy tính bỏ túi đơn giản, đọc một biểu thức số học, ước lượng rồi in ra giá trị số của nó. Chúng ta xây dựng bắt đầu từ văn phạm sau : E → E + T | T T → T * F | F F → (E) | digit Token digit là một ký hiệu số từ 0 đến 9. Một chương trình Yacc dành cho văn phạm này như sau : %{ # include %} % token DIGIT %% line : expr '\n' { print ("%d\n", $1); } ; expr : expr '+' term { $$ = $1 + $3; } | term ; term : term '* ' factor { $$ = $1 * $3; } | factor ; factor: '(' expr ')' { $$ = $2 ; } | DIGIT ; 108 %% yylex ( ) { int c c = getchar ( ); if (isdigit(c)) { yyval = c -'0'; return DIGIT; } return c; } Phần khai báo có thể bao gồm 2 phần nhỏ: - Khai báo C đặt nằm trong cặp dấu %{ và }%. Những khai báo này sẽ được sử dụng trong phần 2 và phần 3. - Khai báo các token (DIGIT là một token). Các token khai báo ở đây sẽ được dùng trong phần 2 và phần 3. Phần luật dịch: Mỗi luật dịch là một luật sinh kết hợp với hành vi ngữ nghĩa. Mỗi luật sinh có dạng → | | ... được mô tả trong Yacc : : { hành vi ngữ nghĩa 1 } | { hành vi ngữ nghĩa 2 } ... | { hành vi ngữ nghĩa n } ; Trong luật sinh, các ký tự nằm trong cặp dấu nháy đơn. 'c' là một ký hiệu kết thúc c, một chuỗi chữ cái và chữ số không nằm trong cặp dấu nháy đơn và không được khai báo là token sẽ là ký hiệu chưa kết thúc. Hành vi ngữ nghĩa của Yacc là một chuỗi các lệnh C có dạng: $$ Giá trị thuộc tính kết hợp với ký hiệu chưa kết thúc bên vế trái. $I Giá trị thuộc tính kết hợp với ký hiệu văn phạm thứ i (kết thúc hoặc chưa) của vế phải. 109 Phần thủ tục: Là các thủ tục viết bằng ngôn ngữ C Ở đây một bộ phân tích từ vựng yylex( ) sinh ra một cặp gồm token và giá trị thuộc tính kết hợp với nó. Các token được trả về phải được khai báo trong phần khai báo. Giá trị thuộc kết hợp với token giao tiếp với bộ phân tích cú pháp thông qua biến yylval (một biến được định nghĩa bởi yacc) Chú ý: Chúng ta có thể kết hợp Lex và Yacc bằng cách dùng #include "lex.yy.c" thay cho thủ tục yylex( ) trong phần thứ 3. 110 BÀI TẬP CHƯƠNG IV 4.1. Cho văn phạm G chứa các luật sinh sau: S → ( L)⏐ a L → L , S | S a) Hãy chỉ ra các thành phần của văn phạm phi ngữ cảnh cho G. b) Viết văn phạm tương đương sau khi loại bỏ đệ quy trái . c) Xây dựng bộ phân tích cú pháp dự đoán cho văn phạm. d) Hãy dùng bộ phân tích cú pháp đã được xây dựng để vẽ cây phân tích cú pháp cho các câu nhập sau: i) (a, a) ii) (a, (a, a)) iii) (a, (a, a), (a, a))) e) Xây dựng dẫn xuất trái, dẫn xuất phải cho từng câu ở phần d f) Hãy cho biết ngôn ngữ do văn phạm G sinh ra ? 4.2. Cho văn phạm G chứa các luật sinh sau: S → aSbS⏐ bSaS | ε a) Chứng minh văn phạm này là mơ hồ bằng cách xây dựng 2 chuỗi dẫn xuất trái khác nhau cho cùng câu nhập abab. b) Xây dựng các chuỗi dẫn xuất phải tương ứng cho câu nhập abab. c) Vẽ các cây phân tích cú pháp tương ứng. d) Văn phạm này sinh ra ngôn ngữ gì ? e) Xây dựng bộ phân tích cú pháp đệ quy lùi cho văn phạm trên. Có thể xây dựng bộ phân tích cú pháp dự đoán cho văn phạm này không ? 4.3. Cho văn phạm G chứa các luật sinh sau: bexpr → bexpr or bterm | bterm bterm → bterm and bfactor | bfactor bfactor → not bfactor | (bexpr) | true | false a) Hãy xây dựng bộ phân tích cú pháp dự đoán cho văn phạm G. b) Xây dựng cây phân tích cú pháp cho câu : not ( true and false ) c) Chứng minh rằng văn phạm này sinh ra toàn bộ các biểu thức boole. 111 d) Văn phạm G có là văn phạm mơ hồ không ? Tại sao ? e) Xây dựng bộ phân tích cú pháp SLR cho văn phạm. 4.4. Cho văn phạm G chứa các luật sinh sau: R → R + R | RR | R* | (R) | a | b a) Chứng minh rằng văn phạm này sinh ra mọi biểu thức chính quy trên các ký hiệu a và b. b) Chứng tỏ đây là văn phạm mơ hồ. c) Xây dựng văn phạm không mơ hồ tương đương với thứ tự ưu tiên của các phép tóan giảm dần như sau : phép bao đóng, phép nối kết, phép hợp. d) Vẽ cây phân tích cú pháp trong cả hai văn phạm trên cho câu nhập : a + b * c e) Xây dựng bộ phân tích cú pháp dự đoán từ văn phạm không mơ hồ. f) Xây dựng bảng phân tích cú pháp SLR cho văn phạm G. Ðề nghị một quy tắc giải quyết đụng độ sao cho các biểu thức chính quy được phân tích một cách bình thường. 4.5. Văn phạm sau đây là một đề nghị điều chỉnh tính mơ hồ cho văn phạm chứa câu lệnh if - then - else: Stmt → if expr then stmt | matched_stmt Matched_Stmt → if expr then matched_stmt else stmt | other Chứng minh rằng văn phạm này vẫn mơ hồ. 4.6. Thiết kế văn phạm cho các ngôn ngữ sau. Ngôn ngữ nào là chính quy? a) Tập tất cả các chuỗi 0 và 1 sao cho mỗi số 0 có ít nhất một số 1 ở ngay sau nó. b) Các chuỗi 0 và 1 với số số 0 bằng số số 1. c) Các chuỗi 0 và 1 với số số 0 không bằng số số 1. d) Các chuỗi 0 và 1 không chứa chuỗi 001 như chuỗi con. 4.7. Cho văn phạm G chứa các luật sinh sau : S → aSa | aa Xây dựng bộ phân tích cú pháp đệ quy lùi cho văn phạm với yêu cầu phải thử khả triển aSa trước aa. 112 4.8. Cho văn phạm G chứa các luật sinh sau: S → aAB A → Abc | b B → d a) Xây dựng bộ phân tích cú pháp dự đoán cho văn phạm . b) Hãy dùng bộ phân tích cú pháp đã được xây dựng để phát sinh cây phân tích cú pháp cho câu nhập: abbcd 4.9. Cho văn phạm G chứa các luật sinh sau: E → E or T | T T → T and F | F F → ( E) | not F | id a) Hãy xây dựng bộ phân tích cú pháp dự đoán cho văn phạm. b) Vẽ cây phân tích cú pháp cho câu nhập : id and not ( id or id ) 4.10. Cho văn phạm G chứa các luật sinh sau: S → AB A → Ab | a B → cB | d a) Xây dựng bộ phân tích cú pháp thứ tự ưu tiên cho văn phạm . b) Hãy dùng bộ phân tích cú pháp đã xây dựng để phát sinh cây phân tích cú pháp cho câu nhập: abccd 4.11. Cho văn phạm G: S → D • D | D D → DB | B B → 0 | 1 a) Xây dựng bộ phân tích cú pháp thứ tự ưu tiên cho văn phạm . b) Hãy dùng bộ phân tích cú pháp đã xây dựng để phát sinh cây phân tích cú pháp cho câu nhập: 101•101 4.12. Cho văn phạm G Assign → id : = exp Exp → Exp + Term | Term 113 Term → Term * Factor | Factor Factor → id | ( Exp ) a) Xây dựng bộ phân tích cú pháp thứ tự ưu tiên cho văn phạm . b) Hãy dùng bộ phân tích cú pháp đã được xây dựng để phát sinh cây phân tích cú pháp cho câu nhập: id : = id + id * id 4.13. Cho văn phạm mơ hồ như sau: S → AS | b A → SA | a a) Xây dựng họ tập hợp mục LR(0) cho văn phạm này. b) Xây dựng bảng phân tích cú pháp SLR . c) Thực hiện quá trình phân tích cú pháp SLR khả triển cho chuỗi nhập : abab d) Xây dựng bảng phân tích cú pháp chính tắc . e) Xây dựng bảng phân tích cú pháp LALR . 4.14. Cho văn phạm G như sau: E → E + T | T T → TF | F F → F * | a | b a) Xây dựng bảng phân tích cú pháp SLR cho văn phạm này. b) Thực hiện quá trình phân tích cú pháp SLR cho chuỗi nhập : b + ab* a c) Xây dựng bảng phân tích cú pháp LALR. 4.15. Chứng tỏ rằng văn phạm sau đây: S → Aa | bAc | dc | bda A → d là LALR(1) nhưng không phải SLR(1). 4.16. Cho văn phạm G như sau: E → E sub R | E sup E | { E } | c R → E sup E | E a) Xây dựng bảng phân tích cú pháp SLR cho văn phạm này. b) Ðề nghị một quy tắc giải quyết đụng độ để các biểu thức text có thể được phân tích một cách bình thường. 114 4.17. Viết một chương trình Yacc nhận chuỗi input là các biểu thức số học, sinh ra output là chuỗi biểu thức hậu tố tương ứng. 4.18. Viết một chương trình Yacc nhận biểu thức chính quy làm chuỗi input và sinh ra output là cây phân tích cú pháp của nó. 115
File đính kèm:
- nguyen_li_ngon_ngu_lap_trinh_chuong_iv_phan_tich_cu_phap.pdf