Tóm tắt Luận án Mô hình kết cấu gối cô lập trượt ma sát cho công trình chịu tải trọng động đất
Động đất là một trong những thảm họa lớn do thiên nhiên gây
ra đối với tính mạng con người, công trình xây dựng và nền kinh tế
nói chung. Trong lịch sử, thế giới đã chứng kiến rất nhiều trận động
đất mạnh xảy ra, cướp đi rất nhiều nhân mạng, hủy hoại rất nhiều
công trình xây dựng và hàng triệu đôla tổn thất của nền kinh tế hàng
năm do động đất.
Ở Việt Nam, mặc dù không nằm trong “vành đai lửa” của các
chấn tâm động đất mạnh trên thế giới. Nhưng Việt Nam vẫn là quốc
gia nằm trong khu vực có mối hiểm họa động đất khá cao. Đó là báo
cáo của các nhà khoa học tại Hội thảo quốc tế "Nguy hiểm động đất,
sóng thần và các hệ thống cảnh báo sớm khu vực Châu Á - Thái Bình
Dương" do Viện Vật lý địa cầu - Viện Khoa học Công nghệ Việt
Nam tổ chức trong hai ngày (5 và 6-9.2011). Một số khu đô thị lớn
hiện đang nằm trên các đới đứt gãy và có khả năng xảy ra những trận
động đất có cấp độ rất mạnh như Hà Nội, đang nằm trên các đới đứt
gãy sông Hồng, sông Chảy, sông Mã, Sơn La được dự báo phải chịu
đựng chấn động cấp độ 8 theo thang độ Richter.
Gần đây, các dư chấn do động đất gây ra đã xuất hiện nhiều
trên các tỉnh thành, đặc biệt là Hà Nội, Thành phố Hồ Chí Minh và
Đà Nẵng, nơi tập trung một số lượng lớn các nhà cao tầng, các cây
cầu lớn và nhu cầu xây dựng các công trình lớn ngày càng tăng về số
lượng cũng như về chiều cao. Các loại công trình này rất nhạy cảm
với gia tốc nền của những trận động đất.
Tóm tắt nội dung tài liệu: Tóm tắt Luận án Mô hình kết cấu gối cô lập trượt ma sát cho công trình chịu tải trọng động đất
BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐẠI HỌC ĐÀ NẴNG NGUYỄN VĂN NAM MÔ HÌNH KẾT CẤU GỐI CÔ LẬP TRƯỢT MA SÁT CHO CÔNG TRÌNH CHỊU TẢI TRỌNG ĐỘNG ĐẤT CHUYÊN NGÀNH : CƠ KỸ THUẬT MÃ SỐ : 62.52.01.01 TÓM TẮT LUẬN ÁN TIẾN SĨ KỸ THUẬT Đà Nẵng - 2017 Công trình được hoàn thành tại Trường Đại học Bách khoa - Đại học Đà Nẵng Người hướng dẫn khoa học: 1. PGS.TS. HOÀNG PHƯƠNG HOA 2. PGS.TS. PHẠM DUY HÒA Phản biện 1: . Phản biện 2: . Phản biện 3: . Luận án được bảo vệ tại Hội đồng chấm Luận án tốt nghiệp Tiến sĩ kỹ thuật họp tại Đại học Đà Nẵng vào ngày thángnăm 2017. Có thể tìm hiểu luận án tại: - Trung tâm Thông tin - Học liệu, Đại học Đà Nẵng. - Thư viện Quốc gia Việt Nam. 1 MỞ ĐẦU 1. Lý do chọn đề tài Động đất là một trong những thảm họa lớn do thiên nhiên gây ra đối với tính mạng con người, công trình xây dựng và nền kinh tế nói chung. Trong lịch sử, thế giới đã chứng kiến rất nhiều trận động đất mạnh xảy ra, cướp đi rất nhiều nhân mạng, hủy hoại rất nhiều công trình xây dựng và hàng triệu đôla tổn thất của nền kinh tế hàng năm do động đất. Ở Việt Nam, mặc dù không nằm trong “vành đai lửa” của các chấn tâm động đất mạnh trên thế giới. Nhưng Việt Nam vẫn là quốc gia nằm trong khu vực có mối hiểm họa động đất khá cao. Đó là báo cáo của các nhà khoa học tại Hội thảo quốc tế "Nguy hiểm động đất, sóng thần và các hệ thống cảnh báo sớm khu vực Châu Á - Thái Bình Dương" do Viện Vật lý địa cầu - Viện Khoa học Công nghệ Việt Nam tổ chức trong hai ngày (5 và 6-9.2011). Một số khu đô thị lớn hiện đang nằm trên các đới đứt gãy và có khả năng xảy ra những trận động đất có cấp độ rất mạnh như Hà Nội, đang nằm trên các đới đứt gãy sông Hồng, sông Chảy, sông Mã, Sơn La được dự báo phải chịu đựng chấn động cấp độ 8 theo thang độ Richter. Gần đây, các dư chấn do động đất gây ra đã xuất hiện nhiều trên các tỉnh thành, đặc biệt là Hà Nội, Thành phố Hồ Chí Minh và Đà Nẵng, nơi tập trung một số lượng lớn các nhà cao tầng, các cây cầu lớn và nhu cầu xây dựng các công trình lớn ngày càng tăng về số lượng cũng như về chiều cao. Các loại công trình này rất nhạy cảm với gia tốc nền của những trận động đất. Với những thực tế như trên, các công trình xây dựng cần được thiết kế kháng chấn, đặc biệt là thiết kế kháng chấn theo quan điểm hiện đại, khái niệm này gắn với thuật ngữ “điều khiển dao động kết 2 cấu” và tương đối còn mới mẻ ở Việt Nam. Do đó, việc nghiên cứu và tìm hiểu về chúng là rất cần thiết, có ý nghĩa khoa học và thực tiễn cao và đây cũng là lý do để tác giả nghiên cứu đề tài: “Mô hình kết cấu gối cô lập trượt ma sát cho công trình chịu tải trọng động đất” nhằm đưa ra một giải pháp làm giảm tác hại do động đất gây ra cho công trình xây dựng. 2. Mục đích nghiên cứu Nghiên cứu xây dựng mô hình tính toán kết cấu cách chấn bằng các dạng gối trượt ma sát SFP, DFP và TFP chịu tải trọng động đất. Đánh giá hiệu quả giảm chấn cho công trình xây dựng khi sử dụng các gối cách chấn trên. Từ đó, nghiên cứu ứng dụng gối TFP cho các công trình nhà cao tầng xây dựng ở Hà Nội, Việt Nam. 3. Đối tượng và phạm vi nghiên cứu Đối tượng nghiên cứu trong luận án là các dạng gối trượt ma sát bao gồm: gối SFP, gối DFP và gối TFP. Phạm vi nghiên cứu của luận án bao gồm: Nghiên cứu phản ứng kết cấu cho cục bộ từng gối (không xét đến sự làm việc đồng thời nhiều gối trong một công trình), bỏ qua dao động xoắn; Ứng xử kết cấu bên trên là tuyến tính, ứng xử của gối là phi tuyến. 4. Nội dung luận án - Tổng quan về động đất, cách chấn đáy và gối trượt ma sát. - Tìm hiểu cấu tạo, nguyên lý làm việc của các gối cách chấn SFP, DFP và TFP. - Xây dựng mô hình tính toán cho kết cấu cách chấn bằng các dạng gối trượt ma sát nêu trên chịu động đất. Đánh giá hiệu quả giảm chấn của các gối này cho công trình xây dựng. - Nghiên cứu phát triển một mô hình mới cho gối TFP. - Nghiên cứu ứng dụng gối TFP cho nhà cao tầng ở Việt Nam 3 theo tiêu chuẩn thiết kế ASCE 7-2010. 5. Phương pháp nghiên cứu Nghiên cứu mô hình tính toán lý thuyết, kết quả nghiên cứu được mô phỏng bằng phần mềm Matlab và được so sánh kiểm chứng bằng một mô hình thí nghiệm của nhóm tác giả khác đã được công bố bởi NEES (Network for Earthquake Engineering Simulation). 6. Những đóng góp mới của luận án - Xây dựng mô hình tính toán kết cấu cách chấn bằng các gối trượt ma sát SFP, DFP và TFP. Đánh giá chi tiết hiệu quả giảm chấn các dạng gối này cho công trình. - Phát triển được một mô hình cải tiến cho gối TFP. Thông qua mô hình này, chi tiết chuyển vị của từng con lắc trên những mặt cong và ảnh hưởng thành phần gia tốc nền theo phương đứng cũng được tính toán rõ ràng cho gối TFP. - Tìm ra bộ thông số kỹ thuật hợp lý của gối TFP cho công trình nhà cao tầng ở Hà Nội và đánh giá hiệu quả giảm chấn của nó. Điều này có ý nghĩa thực tiễn cao trong thiết kế kháng chấn ở Việt Nam. 7. Bố cục của luận án Luận án được trình bày gồm phần mở đầu, 4 chương tiếp theo và phần kết luận, kiến nghị. Toàn bộ nội dung của luận án được chứa đựng trong 132 trang A4 và có bố cục như sau: Phần mở đầu Chương 1. Tổng quan Chương 2. Mô hình các dạng gối trượt ma sát Chương 3. Mô hình cải tiến gối con lắc ma sát ba Chương 4. Hiệu quả giảm chấn của gối TFP trong nhà cao tầng tại Hà Nội Kết luận, kiến nghị 4 Chương 1 TỔNG QUAN 1.1. Tổng quan về động đất và thiết kế công trình chịu động đất 1.1.1. Động đất Động đất là hiện tượng dao động rất mạnh của nền đất xảy ra khi một nguồn năng lượng lớn được giải phóng trong thời gian rất ngắn do sự nứt rạn đột ngột trong phần vỏ hay trong phần áo trên của quả đất [10], [ 62]. Động đất có những nguồn gốc chính như sau: Động đất có nguồn gốc từ hoạt động kiến tạo; Động đất có nguồn gốc từ các đứt gãy; Động đất có nguồn gốc khác: do sự dãn nở trong lớp vỏ đá cứng của quả đất; do các vụ nổ; do hoạt động của núi lửa; Các thông số quan trọng chuyển động nền trong thiết kế kháng chấn công trình bao gồm: biên độ lớn nhất, khoảng thời gian kéo dài của chuyển động mạnh, nội dung tần số, độ lớn động đất, khoảng cách đến đứt gãy, điều kiện đất nền tại vị trí đang xét. 1.1.2. Giải pháp thiết kế công trình chịu động đất Thiết kế công trình chịu động đất là một nhiệm vụ, một thử thách lớn cho các nhà thiết kế kết cấu xây dựng. Có hai quan điểm thiết kế kháng chấn: quan điểm thiết kế kháng chấn truyền thống và quan điểm thiết kế kháng chấn hiện đại. Quan điểm thiết kế kháng chấn hiện đại gắn với kỹ thuật điều khiển kết cấu với 3 nhóm kỹ thuật chính như sau: điều khiển bị động, điều khiển chủ động và điều khiển bán chủ động. 1.2. Kỹ thuật cách chấn đáy (cô lập móng) 1.2.1. Khái niệm về cách chấn đáy Cách chấn đáy (cô lập móng) là kỹ thuật điều khiển bị động kết cấu, rất hiệu quả cho thiết kế công trình chịu động đất. Ý tưởng 5 chính của kỹ thuật này là cách ly kết cấu bên trên với nền bằng cách sử dụng các gối mềm, gọi là gối cách chấn. 1.2.2. Các dạng gối sử dụng trong kỹ thuật cách chấn đáy Các dạng gối sử dụng trong kỹ thuật cách chấn cho công trình thường gồm hai dạng phổ biến: gối cao su (gối đàn hồi, Hình 1.6) và gối trượt ma sát, được sản xuất từ kim loại chống rỉ. Gối trượt ma sát gồm 3 loại chính: - Gối con lắc ma sát đơn (gối SFP): Cấu tạo như Hình 1.7, gồm 1 mặt cong bán kính R, 1 con lắc trượt trên mặt cong với hệ số ma sát và khả năng chuyển vị ngang là d. dR, a. Cấu tạo bên trong b. Mặt cắt ngang Hình 1.7. Gối con lắc ma sát đơn, gối SFP (EPS, 2011) - Gối con lắc ma sát đôi (gối DFP): Cấu tạo như Hình 1.8, gồm mặt cong 1 và 2 với bán kính lần lượt là R1 và R2 và 1 con lắc bên trong. a. Cấu tạo bên trong b. Mặt cắt ngang Hình 1.8. Gối con lắc ma sát đôi, gối DFP (Fenz, 2008e) - Gối con lắc ma sát ba (gối TFP): Cấu tạo như Hình 1.9, gồm 4 mặt cong lần lượt với các bán kính R1, R2, R3 và R4. Bên trong có 3 con lắc trượt trên 4 mặt cong này với các hệ số ma sát tương ứng i. 6 a. Cấu tạo bên trong b. Mặt cắt ngang Hình 1.9. Gối con lắc ma sát ba, gối TFP (Fenz, 2008e) 1.2.3. Sơ lược về lịch sử ứng dụng kỹ thuật cách chấn đáy Kỹ thuật cách chấn đáy được nghiên cứu và ứng dụng rộng rãi trong vài thập niên gần đây. Tuy nhiên, ý tưởng về kỹ thuật này xuất hiện cách đây hơn 100 năm qua sáng kiến của Touaillon. Trong những năm gần đây, việc ứng dụng kỹ thuật cách chấn đáy vào các công trình chịu động đất trở nên phổ biến ở các nước như Mỹ, Nhật, New Zealand, và một số nước châu Âu. 1.3. Tổng quan tình hình nghiên cứu gối cô lập trượt ma sát 1.3.1. Tình hình nghiên cứu ngoài nước - Nghiên cứu về gối SFP: Công bố đầu tiên vào năm 1987 bởi Zayas. Những nghiên cứu nổi bật được công bố bởi các tác giả khác: Mokha, Constantinou, Reinhorn, Nagarajaiah, Mosqueda,Những nghiên cứu trên tập trung phân tích cấu tạo và chuyển động của gối SFP. Hiệu quả giảm chấn của gối được đánh giá thông qua các mô hình lý thuyết và thực nghiệm. - Nghiên cứu về gối DFP: hai nhóm nghiên cứu Tsai và Constantinou được xem như là có hệ thống về gối DFP. Ngoài ra, còn nhiều nghiên cứu riêng lẻ về gối này cũng đáng quan tâm như: Kim và Yun (2007), Malekzadeh (2010), - Nghiên cứu về gối TFP: Gối TFP với những ưu điểm của nó 7 bắt đầu được sản xuất vào khoảng năm 2007. Các nghiên cứu nổi bật có thể kể tới như: nhóm nghiên cứu của Constantinous và Fenz (Đại học Buffalo); nhóm nghiên cứu của Steve Mahin, Troy Morgan và Tracy Becke (Đại học Berkeley); nhóm nghiên cứu của Ryan (Đại học Nevada, Reno), những công bố mới nhất của gối TFP gần như thuộc về nhóm này, những công bố có thể kể đến như: Dao [36 - 38], Okazaki [80], Ryan [86 - 88]. Ngoài ra, Một số nghiên cứu của những tác giả khác về gối TFP cũng đã công bố như: Fadi [41], Ghodrati [52], Moeindarbari [67], Sarkisian [89], Tsai [103 - 104]. 1.3.2. Tình hình nghiên cứu trong nước Ở Việt Nam, cách chấn đáy được đề cập từ năm 2006 trong TCXDVN 375:2006. Nghiên cứu về cách chấn đáy rất hạn chế, những nghiên cứu nổi bật có thể kể đến: Nguyễn Văn Giang và Chu Quốc Thắng (2006), Trần Tuấn Long (2007), Lê Xuân Huỳnh và cộng sự (2008), Đỗ Kiến Quốc (2009), Lê Xuân Tùng (2010, 2012). 1.4. Nhận xét, những nghiên cứu cần thiết - Thiết kế công trình chịu động đất là một yêu cầu khách quan. Sử dụng các gối cách chấn trong kỹ thuật điều khiển kết cấu chịu động đất là quan điểm mới mang lại hiệu quả cao, cần nghiên cứu và ứng dụng rộng rãi hơn nữa trong thiết kế công trình chịu động đất. - Những nghiên cứu về gối trượt ma sát cần được triển khai trong luận án này như sau: Đưa ra mô hình tính toán và đánh giá hiệu quả giảm chấn của các gối SFP, DFP và TFP; Cần nghiên cứu phát triển một mô hình cải tiến hơn cho gối TFP từ mô hình đơn giản của các nghiên cứu trước. Mô hình này phải có đủ độ tin cậy và cải tiến hơn so với các mô hình tính toán hiện có; Một nghiên cứu ứng dụng gối TFP cho công trình nhà cao tầng xây dựng trong điều kiện đất nền ở Hà Nội cần được triển khai. 8 Chương 2 MÔ HÌNH CÁC DẠNG GỐI TRƯỢT MA SÁT 2.1. Cơ sở lý thuyết 2.1.1. Cơ sở tính toán công trình chịu động đất - Mô hình tính toán: Với những giả thiết trong động lực học kết cấu, mô hình tính toán của một kết cấu nhà n tầng chịu tải trọng động đất sẽ được trình bày như Hình 2.1. ug m1 m2 mn k1 k2 kn cn c2 c1 Taàng 1 Taàng 2 Taàng n ug k1 c1 m1 u1 k2 c2 m2 u2 kn cn mn un ug a. b. c. a. Khung thực n tầng; b. Mô hình tính toán lý tưởng; c. Mô hình tương đương Hình 2.1. Mô hình hệ kết cấu nhiều bậc tự do chịu động đất - Phương trình chuyển động: Phương trình vi phân chuyển động của mô hình kết cấu sẽ được thiết lập theo phương pháp chuyển vị (phương pháp ma trận độ cứng) có dạng như phương trình 2.1. - Phương pháp xác định phản ứng của kết cấu: Trong nghiên cứu này sẽ sử dụng phương pháp tích phân trực tiếp phương trình chuyển động (phân tích theo lịch sử thời gian). Đây là phương pháp cho kết quả chính xác nhất, phản ánh đúng bản chất bài toán động, phù hợp cho các bài toán nghiên cứu. 2.1.2. Lựa chọn phương pháp số cho nghiên cứu Hệ phương trình vi phân chuyển động của kết cấu cách chấn chịu động đất trong nghiên cứu là một dạng phức tạp. Ta phải sử 9 dụng các phương pháp số để tìm nghiệm của chúng. Phương pháp Runge - Kutta sẽ được lựa chọn trong nghiên cứu này với những ưu điểm của nó. 2.1.3. Mô hình tính toán lực ma sát trong gối trượt ma sát Lực ma sát trong chuyển động có quy luật tự nhiên tương đối phức tạp. Nó phụ thuộc vào nhiều yếu tố như: bề mặt vật liệu, áp lực, vận tốc trượt và lịch sử tải trọng, Có nhiều mô hình được thiết lập để xác định lực ma sát động. Những mô hình đã sử dụng trong các nghiên cứu về gối cách chấn trượt ma sát như: mô hình Coulomb, mô hình Coulomb hiệu chỉnh, Mô hình dẻo (Viscoplasticity model, mô hình Bouc - Wen). Trong đó, mô hình dẻo là cho kết quả chính xác nhất, đây là mô hình sử dụng trong nghiên cứu này. 2.2. Mô hình gối con lắc ma sát đơn (gối SFP) 2.2.1. Quan hệ giữa lực và chuyển vị ngang Phương trình tổng quát chuyển động của gối SFP thể hiện quan hệ giữa lực và chuyển vị ngang trong gối như 2.25. Đường ứng xử trễ thể hiện trên Hình 2.5. r W F u WZ F R (2.25) trong đó: thành phần thứ 1 của phương trình là lực phục hồi, thành phần thứ 2 là lực ma sát, lực va chạm là thành phần thứ 3. F/W u W/R Hình 2.5. Đường ứng xử trễ trong gối SFP 2.2.2. Mô hình tính toán kết cấu cách chấn bằng gối SFP Mô hình tính toán được trình bày như Hình 2.6. 10 ug k1 c1 m1 u1 k2 c2 m2 u2 kn cn mn un kb d ub mb Goái SFP Hình 2.6. Mô hình tính toán kết cấu cách chấn bằng gối SFP Hệ phương trình vi phân chuyển động gồm (n+1) phương trình của kết cấu cách chấn chịu gia tốc nền được viết như phương trình 2.26 (theo nguyên lý d’Alembert). 2.3. Mô hình gối con lắc ma sát đôi (gối DFP) 2.3.1. Quan hệ giữa lực và chuyển vị ngang trong gối Gối DFP có cấu tạo như Hình 1.8. Chuyển động của gối gồm 3 giai đoạn trượt khác nhau. Giai đoạn I: mặt 1 trượt trước (mặt 2 chưa trượt). Giai đoạn II: mặt 2 sẽ trượt cùng với mặt 1 (cả hai mặt cùng trượt). Giai đoạn III: trượt chỉ còn xảy ra ở mặt 2 (mặt 1 dừng trượt). Phương trình chuyển động thể hiện quan hệ giữa lực và chuyển vị ngang trong các giai đoạn này thể hiện như 2.30, 2.35 và 2.36. Đường ứng xử trễ 3 giai đoạn chuyển động của gối như Hình 2.8. f=F/W u 2 2 2 1 uII uI uIII =d1+d2 Hình 2.8. Đường ứng xử trễ trong gối DFP (----: giai đoạn I, II) 2.3.2. Mô hình tính toán kết cách chấn bằng gối DFP Mô hình tính toán kết cấu cách chấn bằng gối DFP chịu động đất trình bày như Hình 2.9. Hệ phương trình vi phân chuyển động 11 được viết như phương trình 2.42 (theo nguyên lý d’Alembert). ug k1 c1 m1 kb1 d1 u1ub1 mb1 k2 c2 m2 u2 kn cn mn un kb2 d2 ub2 mb2 Goái DFP Hình 2.9. ... h với thí nghiệm chịu băng gia tốc 90TAB a. Kết quả chuyển vị gối theo phương x và y b. Kết quả đường ứng xử trễ của gối theo phương x và y Hình 3.26. So sánh kết quả phân tích với thí nghiệm chịu băng gia tốc 115TAK 17 3.3. Tính toán chi tiết chuyển vị con lắc Chuyển vị con lắc trên 4 mặt cong được tính như sau: 1 1 1 1 2 2 2 2 1 1 3 3 3 3 4 4 4 4 4 4 ( ) ( ) ( ) ( ) eff f r eff f r eff eff f r eff eff f r R u F F F W RW u F F F u R W RW u F F F u R W R u F F F W (3.9) Trong đó những thành phần lực được xác định từ việc giải hệ phương trình vi phân chuyển động. 3.4. Ảnh hưởng thành phần gia tốc nền theo phương đứng Mô hình xét đến ảnh hưởng thành phần gia tốc nền theo phương đứng được kiểm chứng với mô hình của Dao [36]. Phân tích mô hình nhà 5 tầng với 7 băng gia tốc nền khác nhau trong 2 trường hợp có và không có thành phần gia tốc nền theo phương đứng. Kết quả cho thấy, chuyển vị gối không ảnh hưởng nhiều nhưng gia tốc tuyệt đối và lực cắt trong các tầng thì tăng đáng kể. Do đó, ta không thể bỏ qua thành phần này như các nghiên cứu trước. Hình 3.46 và 3.47 minh họa cho một trường hợp với băng gia tốc 88RRS. a. Gia tốc b. Lực cắt Hình 3.46. Ứng xử kết cấu với băng gia tốc 88RRS 18 Hình 3.47. Ứng xử trễ trong gối với băng gia tốc 88RRS 3.5. Kết luận chương 3 Đã phát triển được một mô hình tính toán mới cho kết cấu cách chấn bằng gối TFP từ mô hình tương đương một chiều (1D) của Fenz và công sự (2008). Thông qua mô hình này, chuyển vị của các con lắc trên những mặt cong được tính toán chi tiết và ảnh hưởng thành phần gia tốc nền theo phương đứng được đánh giá rõ ràng. Chương 4 HIỆU QUẢ GIẢM CHẤN CỦA GỐI TFP TRONG NHÀ CAO TẦNG TẠI HÀ NỘI 4.1. Giới thiệu Hà Nội được dự báo là có thể xảy ra động đất cấp 8. Thiết kế công trình chịu động đất cho khu vực này là bắt buộc trong các công trình xây dựng gần đây. Tuy nhiên, phương pháp thiết kế kháng chấn hiện nay vẫn còn theo truyền thống. Trong nghiên cứu của chương này, giải pháp thiết kế kháng chấn với kỹ thuật cách chấn đáy bằng gối TFP cho công trình nhà cao tầng được tiến hành. 4.2. Phân tích hiệu quả gối TFP trong nhà cao tầng xây dựng tại Hà Nội 4.2.1. Thông số kết cấu Kết cấu nhà 9 tầng bằng Bêtông cốt thép, với giả thiết bản sàn tuyệt đối cứng, khối lượng và độ cứng các tầng giả định giống nhau, 19 trong đó: khối lượng mi=100 N.s2/mm, độ cứng ki=150 kN/mm, tỉ số cản chu kỳ cơ bản T1 = 1 s (phù hợp cho nhiều công trình cùng quy mô). 4.2.2. Lựa chọn thông số gia tốc nền phân tích Với phương pháp thiết kế kháng chấn đa mục tiêu và kết cấu được phân tích theo lịch sử thời gian, gia tốc nền được lựa chọn theo quy định của ASCE 7-2010 gồm 7 băng gia tốc và mỗi băng gia tốc được ghi cả 2 phương. Kết cấu được phân tích và đánh giá với 3 cấp độ động đất khác nhau bao gồm: cấp SLE (động đất nhỏ), cấp DBE (động đất mạnh) và cấp MCE (động đất rất mạnh). Độ lớn các băng gia tốc ứng với từng cấp độ được điều chỉnh bằng hệ số SF như phương trình 4.3. Kết quả băng gia tốc lựa chọn như Bảng 4.1 và hệ số SF tính như Bảng 4.2. Hình 4.2 và 4.3 sẽ minh họa phổ gia tốc trung bình SRSS và phổ mục tiêu sau khi điều chỉnh độ lớn. 2 1 2 1 2 ( ) 1.3 T SRSS a T T SRSS T f SF S S dT SF S dT (4.3) Hình 4.2. Phổ mục tiêu MCE so với trung bình SRSS trong kết cấu cách chấn 20 Hình 4.3. Phổ mục tiêu MCE so với trung bình SRSS trong kết cấu ngàm cứng 4.2.3. Lựa chọn các thông số kỹ thuật hợp lý cho gối TFP với điều kiện đất nền Hà Nội Theo như cấu tạo, sẽ có 7 thông số kỹ thuật của gối cần được lựa chọn là: 2 3 ; 2 3eff effR R ; 2 3d d ; 1; 4; Reff1 = Reff4; d1 = d4 đảm bảo sự trượt xảy ra trên 5 giai đoạn. Tiêu chí để chọn các thông số hợp lý này được đưa ra: 1. Thích nghi nhiều cấp độ động đất thiết kế; 2. Phản ứng của kết cấu nhỏ nhất có thể. Quy trình lựa chọn bộ thông số hợp lý cho gối TFP được thực hiện như sơ đồ Hình 4.24. Kết quả ta có bộ thông số hợp lý của gối như sau: R2 = R3 = 500 mm; R1 = R4 = 4000 mm; 2 = 3 = 0.01 - 0.02; 1 = 0.02 - 0.06; 4 = 0.04 – 0.08; d2 = d3 = 40 mm; d1 = d4 = 170 mm. 4.2.4. Hiệu quả giảm chấn của gối cho công trình Với bộ thông số hợp lý tìm được, ta tiến hành phân tích kết cấu trong hai trường hợp: Kết cấu ngàm cứng và cách chấn bằng gối TFP. Hiệu quả giảm chấn được đánh giá thông qua gia tốc tuyệt đối và chuyển vị tương đối trong các tầng. Với cấp độ MCE, kết quả thể hiện như Hình 4.20 và 4.21. Cấp SLE và DBE cho kết quả tương tự. Chuyển vị gối, tổng lực cắt đáy trong 2 trường hợp và hiệu quả giảm 21 chấn của gối TFP được tính toán chi tiết trong Bảng 4.4. Hình 4.20. Gia tốc tuyệt đối trong các tầng, cấp MCE Hình 4.21. Chuyển vị tương đối trong các tầng, cấp MCE Bảng 4.4. Chuyển vị gối và hiệu quả giảm lực cắt đáy trong kết cấu nhà 9 tầng cách chấn bằng gối TFP Cấp độ Chuyển vị gối, ub (mm) Tổng lực cắt đáy, Fb (kN) Kết cấu ngàm cứng Kết cấu cách chấn Kết cấu ngàm cứng Kết cấu cách chấn Hiệu quả giảm (%) SLE 0 65.8 2415 697 71 DBE 0 176 5183 1103 79 MCE 0 311 7791 1451 81 Từ kết quả phản ứng kết cấu, những điều kiện về lực ngang trong gối (theo 17.2.4.4, ASCE 7-2010) và các thông số giả thiết ban đầu được kiểm tra thỏa mãn yêu cầu. 22 Hình 4.24. Sơ đồ mô tả quy trình xác định bộ thông số cho gối TFP 4.3. Kết luận chương 4 Gối TFP là thiết bị cách chấn hiệu quả trong thiết kế kháng chấn đa mục tiêu. Nghiên cứu ứng dụng gối TFP cho nhà cao tầng chịu động đất ở Hà Nội theo ASCE 7-2010 mang lại hiệu quả cao (xấp xỉ từ 70% đến 80%). Một phương pháp xác định bộ thông số hợp lý cho gối TFP được trình bày. Theo đó, một thông số hợp lý cho gối TFP sử dụng cho nhà cao tầng xây dựng tại Hà Nội được tìm ra. - Xác định được 1 < 4 hợp lý - Phân tích Reff1 = Reff4 thay đổi với 1 < 4 vừa xác định + - Quy mô kết cấu - Vị trí xây dựng Xây dựng phổ thiết kế 1. Tính toán thông số kết cấu. 2. Chọn thông số cho gối: - Chọn theo kinh nghiệm: Reff2 = Reff3 ; d2 = d3; 2 = 3 - Chọn sơ bộ: d1 = d4 - Chọn sơ bộ: các trường hợp Reff1 = Reff4 thay đổi. - Chọn sơ bộ: các trường hợp 1 < 4 thay đổi. Chọn và hiệu chỉnh các băng gia tốc nền Giả thiết trước TD và TM Cho Reff1 = Reff4 cố định, phân tích với những trường hợp 1 < 4 thay đổi Tính TD và TM, so sánh với giá trị giả thiết - Chọn được Reff1 = Reff4 hợp lý - Xác định được bộ thông số cho gối Phân tích kết cấu với bộ thông số gối vừa chọn Kiểm tra điều kiện lực ngang trong gối Bộ thông số hợp lý + - - 23 KẾT LUẬN VÀ KIẾN NGHỊ 1. Kết luận Trong phạm vi nghiên cứu của luận án, những kết luận được rút ra như sau: 1. Dựa vào nguyên lý cấu tạo và chuyển động của các dạng gối trượt ma sát bao gồm: gối con lắc ma sát đơn SFP, gối con lắc ma sát đôi DFP và gối con lắc ma sát ba TFP từ các nghiên cứu trước, luận án đã xây dựng mô hình kết cấu cách chấn bằng các gối trên chịu động đất. Nội dung bao gồm: đưa ra mô hình tính toán, thiết lập phương trình vi phân chuyển động và đưa ra phương pháp số để giải phương trình vi phân chuyển động tìm ra phản ứng của kết cấu. Luận án thực hiện một mô phỏng ví dụ số cho kết cấu chịu nhiều băng gia tốc nền khác nhau để đánh giá hiệu quả giảm chấn của thiết bị. Kết quả thu được cho thấy hiệu quả giảm chấn của các dạng gối này là rất tốt. Cũng từ kết quả mô phỏng ví dụ số, những ưu điểm của gối TFP được đánh giá là tốt nhất so với gối SFP và DFP. 2. Với những ưu điểm của gối TFP được đánh giá, luận án đã xây dựng được một mô hình cải tiến cho dạng gối này. Độ tin cậy của mô hình đã được kiểm chứng với kết quả thí nghiệm. 3. Từ mô hình cải tiến của gối TFP, việc tính toán chuyển vị của từng con lắc bên trong gối được thực hiện. Kết quả đánh giá được chi tiết vị trí từng con lắc tại từng thời điểm chuyển động của gối. Ý nghĩa của việc này là xác định chính xác các chuyển vị dư của mỗi con lắc khi kết thúc trận động đất. 4. Ảnh hưởng của thành phần gia tốc nền theo phương đứng đến phản ứng của kết cấu cách chấn bằng gối TFP đã được làm rõ trong luận án. Kết quả này cho thấy, ở một số trận động đất có giá trị đỉnh lớn hay có thành phần gia tốc theo phương đứng lớn sẽ cho 24 phản ứng của kết cấu tăng lên đáng kể, không thể bỏ qua trong thiết kế, điều này gần như bị bỏ qua trong nhiều nghiên cứu trước đây, đặc biệt là gia tốc tuyệt đối trong các tầng. 5. Nghiên cứu ứng dụng gối TFP cho công trình nhà cao tầng với điều kiện động đất ở Hà Nội được thực hiện trong nội dung của luận án. Nội dung nghiên cứu này là tìm ra một bộ thông số kỹ thuật hợp lý cho gối TFP với điều kiện động đất ở Hà Nội, đánh giá hiệu quả cách chấn cho công trình khi sử dụng gối cách chấn TFP. 2. Kiến nghị Trong điều kiện và phạm vi nghiên cứu của luận án, một số vấn đề chưa được đề cập và làm rõ, cần có các nghiên cứu tiếp theo sau, cụ thể: 1. Cần nghiên cứu một mô hình va chạm hợp lý để mô phỏng ứng xử kết cấu khi con lắc đạt đến chuyển vị giới hạn. Khi hiện tượng va chạm giữa con lắc và vành cứng xảy ra, ngăn chuyển vị của con lắc sẽ làm ảnh hưởng đến phản ứng của kết cấu. 2. Khi con lắc trượt trên các mặt cong, nhiệt độ tại mặt tiếp xúc giữa con lắc và mặt cong sẽ tăng lên làm ảnh hưởng đến hệ số ma sát của gối. Vấn đề này cũng cần được nghiên cứu và làm rõ. 3. Kết cấu cách chấn thường có chuyển vị ngang toàn bộ kết cấu lớn. Cần có những nghiên cứu điều khiển kết cấu kết hợp những thiết bị khác cùng với gối cách chấn được triển khai để khắc phục vấn đề này. 4. Cần có những nghiên cứu sâu hơn về bài toán tối ưu đa mục tiêu để tìm ra bộ thông số tốt nhất cho gối TFP với mọi công trình và điều kiện đất nền khác nhau. 25 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ 1. Bài báo đã công bố 1.1. Công bố trong nước 1. Nguyễn Văn Nam, Hoàng Phương Hoa, Phạm Duy Hòa (2013), Hiệu quả giảm chấn của thiết bị gối cô lập trượt ma sát TFP, so với gối SFP, Tuyển tập công trình Hội nghị Cơ học toàn quốc lần thứ IX, Hà Nội, 8-9/12/2012, ISBN: 978-604-911-435-9, trang 397- 405. 2. Phạm Đình Trung, Nguyễn Văn Nam, Nguyễn Trọng Phước (2014), Phân tích sự hiệu quả giảm chấn của gối trượt ma sát kết hợp hệ cản lưu biến từ nối giữa hai kết cấu chịu động đất, Tạp chí Khoa học Trường Đại học Mở Thành phố Hồ Chí Minh, ISSN 1859-3453, Số 1 (34) 2014, trang 102-115. 3. Trần Quốc Khánh, Hoàng Phương Hoa, Nguyễn Văn Nam (2014), Hiệu quả cách chấn của gối con lắc ma sát cho cầu dầm liên tục chịu tải trọng động đất, Tuyển tập công trình Hội nghị Cơ học kỹ thuật toàn quốc kỷ niệm 35 thành lập Viện Cơ học, Nhà xuất bản Khoa học tự nhiên và Công nghệ-6/2014. Tập 1. Cơ học máy-Cơ học thủy khí-Động lực học và Điều khiển, Số: ISBN: 978-604-913-233-9, Trang: 81-86. 4. Nguyễn Văn Nam, Hoàng Phương Hoa, Phạm Duy Hòa (2014), Hiệu quả giảm chấn thiết bị gối cô lập trượt ma sát TFP lắp đặt trong nhà nhiều tầng, Tuyển tập công trình Hội nghị Cơ học kỹ thuật toàn quốc kỷ niệm 35 thành lập Viện Cơ học, Nhà xuất bản Khoa học tự nhiên và Công nghệ-6/2014, Tập 1. Cơ học máy-Cơ học thủy khí-Động lực học và Điều khiển, Số: ISBN 978-604-913-233-9, Trang: 155-160. 26 5. Nguyễn Văn Nam, Hoàng Phương Hoa, Phạm Duy Hòa (2015), Mô hình các dạng gối trượt ma sát trong kết cấu chịu động đất: Gối SFP, Tuyển tập công trình Hội nghị Cơ học kỹ thuật toàn quốc, Đại học Đà Nẵng, ISBN 978-604-84-1273-9, trang 479 - 486. 6. Nguyễn Văn Nam, Hoàng Phương Hoa, Nguyễn Hoàng Vĩnh (2015), Mô hình các dạng gối trượt ma sát trong kết cấu chịu động đất: Gối DFP và TFP, Tuyển tập công trình Hội nghị Cơ học kỹ thuật toàn quốc, Đại học Đà Nẵng, ISBN 978-604-84- 1273-9, trang 487 - 494. 7. Hoàng Phương Hoa, Nguyễn Văn Nam, Phạm Duy Hòa (2016), Nghiên cứu ảnh hưởng của tham số kích thước đến ứng xử gối ma sát hai mặt trượt chống động đất, Tạp chí Xây dưng (Bộ Xây dựng), ISSN 0866-0762, Số: 01.2016, Trang: 87-90. 8. Nguyễn Văn Nam, Hoàng Phương Hoa, Phạm Duy Hòa (2016), Ảnh hưởng thành phần đứng của những trận động đất mạnh đến phản ứng của kết cấu cách chấn bằng gối TFP, Tạp chí Khoa học Công nghệ ĐHĐN, ISSN 1859-1531, Số: 1(98), Trang: 46- 49. 9. Hoàng Phương Hoa, Nguyễn Văn Nam, Phạm Duy Hòa (2016), Thiết kế tối ưu kích thước gối ma sát một mặt trượt cho nhà nhiều tầng chịu động đất, Tạp chí Xây dưng (Bộ Xây dựng), ISSN 0866-0762, Số: 3-2016, Trang: 106-109. 10. Nguyễn Văn Nam, Hoàng Phương Hoa, Phạm Duy Hòa (2016), Hiệu quả của gối cách chấn SFP cho nhà cao tầng chịu động đất có xét đến thành phần kích động đứng, Tạp chí Xây dưng (Bộ Xây dựng), ISSN 0866-0762, Số: 3-2016, Trang: 34-36. 11. Nguyễn Hoàng Vĩnh, Nguyễn Văn Nam, Hoàng Phương Hoa 27 (2016), Mô hình tính toán tổng quát kết cấu cách chấn bằng gối SFP, Tạp chí Xây dưng (Bộ Xây dựng), ISSN 0866-0762, Số: 3-2016, Trang: 102-105. 12. Hoàng Phương Hoa, Nguyễn Văn Nam, Ngô Thanh Nhàn (2016), Ảnh hưởng của thông số kỹ thuật gối SFP đến phản ứng của kết cấu cách chấn, Tạp chí Giao thông Vận tải, ISSN 2354- 0818, Số: 6/2016, Trang: 52-54. 13. Thái Văn Ngãi, Nguyễn Bá Ngọ, Hoàng Phương Hoa, Phan Hoàng Nam, Nguyễn Văn Nam (2016), Nghiên cứu biện pháp giảm chấn cầu dây văng tại nút giao thông Ngã Ba Huế - Thành phố Đà Nẵng chịu tác động của động đất, Tuyển tập công trình khoa học Hội thảo quốc gia “Hạ tầng giao thông với phát triển bền vững”, Đà Nẵng 17-18/9/2016, ISBN 978-604-82-1809-6, Trang: 603-608. 14. Đặng Xuân Bình, Nguyễn Văn Duẫn, Hoàng Phương Hoa, Phan Hoàng Nam, Nguyễn Văn Nam (2016), Nghiên cứu biện pháp giảm chấn kết cấu vòng xuyến tại nút giao thông Ngã Ba Huế - Thành phố Đà Nẵng chịu tác động của động đất, Tuyển tập công trình khoa học Hội thảo quốc gia “Hạ tầng giao thông với phát triển bền vững”, Đà Nẵng 17-18/9/2016, ISBN 978-604- 82-1809-6, Trang: 597-602. 1.1. Công bố quốc tế 1. Nam V.Nguyen, Hoa P.Hoang and Hoa D.Pham (2016), Predicting the responses of triple friction pendulum bearings using an improved model with variant friction coefficient, Proceedings of The Fourteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC14), HochiMinh City, 6-8 Jan, 2016, ISBN: 978-604-82-1684-9, pp. 28 1578-1585. 2. V. Nam Nguyen, P. Hoa Hoang, H. Nam Phan and Fabrizio Paolacci (2016), A Modeling Approach of Base Isolated High- Rise Building with Double Friction Pendulum Bearings, International Conference on Advanced Technology Sustainable Development ICATSD2016. Ho Chi Minh City, 22-23, August 2016, ISBN 978-604-920-040-3, pp. 235-240. 2. Đề tài nghiên cứu khoa học 1. Đề tài cấp Bộ: Nghiên cứu áp dụng giải pháp cách chấn công trình xây dựng chịu tác động của động đất. Mã số: B2016.ĐNA.03. (Đang thực hiện, dự kiến báo cáo năm 2017, trách nhiệm: thành viên).
File đính kèm:
- tom_tat_luan_an_mo_hinh_ket_cau_goi_co_lap_truot_ma_sat_cho.pdf