Dynamic hand gesture recognition using rgb - D images for human-machine interaction
Home-automation products have been widely used in smart homes (or smart
spaces) thanks to recent advances in intelligent computing, smart devices, and new
communication protocols. In term of automating ability, most of advanced technologies are focusing on either saving energy or facilitating the control via an user-interface
(e.g., remote controllers [92], mobile phones [7], tablets [52], voice recognition [11]).
To maximize user ability, a human-computer interaction method must allow end-users
easily using and naturally performing the conventional operations. Motivated by such
advantages, this thesis pursues an unified solution to deploy a complete hand gesturebased control system for home appliances. A natural and friendly way will be deployed
in order to replace the conventional remote controller.
A complete gesture-based controlling application requires both robustness as well
as low computational time. However, these requirements face to many technical challenges such as a huge computational cost and complexity of hand movements. The
previous solution only focus on one of problems in this field. To solve these issues, two
trends in the literature are investigated. One common trend bases on aided-devices
and another focuses on improving the relevant algorithms/paradigms. The first group
addresses the critical issues by using supportive devices such as a data-glove [85, 75],
hand markers [111], or contact sensors mounted on hand, or palm of end-users when
they control home appliances. Obviously, these solutions are expensive or inconvenient for the end-users. For the second one, hand gesture recognition has been widely
attempted by researchers in the communities of computer visions, robotics, and automation control. However, how to achieve the robustness and low computational time
still remaining an open question. In this thesis, the main motivation pursues a set
of \suggestive" hand gestures. There is an argument that the characteristics of hand
gestures are important cues in contexts of deploying a complete hand gesture-based
system.
Tóm tắt nội dung tài liệu: Dynamic hand gesture recognition using rgb - D images for human-machine interaction
MINISTRY OF EDUCATION AND TRAINING HANOI UNIVERSITY OF SCIENCE AND TECNOLOGY THI HUONG GIANG DOAN DYNAMIC HAND GESTURE RECOGNITION USING RGB-D IMAGES FOR HUMAN-MACHINE INTERACTION DOCTORAL THESIS OF CONTROL ENGINEERING AND AUTOMATION Hanoi 12−2017 MINISTRY OF EDUCATION AND TRAINING HANOI UNIVERSITY OF SCIENCE AND TECNOLOGY THI HUONG GIANG DOAN DYNAMIC HAND GESTURE RECOGNITION USING RGB-D IMAGES FOR HUMAN-MACHINE INTERACTION Specialty: Control Engineering and Automation Specialty Code: 62520216 DOCTORAL THESIS OF CONTROL ENGINEERING AND AUTOMATION SUPERVISORS: 1. Dr. Hai Vu 2. Dr. Thanh Hai Tran Hanoi 12−2017 DECLARATION OF AUTHORSHIP I, Thi Huong Giang Doan, declare that the thesis titled, “Dynamic Hand Gesture Recognition Using RGB-D Images for Human-Machine Interaction”, and the works presented in it are my own. I confirm that: This work was done wholly or mainly while in candidature for a Ph.D. research degree at Hanoi University of Science and Technology. Where any part of this thesis has previously been submitted for a degree or any other qualification at Hanoi University of Science and Technology or any other institution, this has been clearly stated. Where I have consulted the published work of others, this is always clearly at- tributed. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. I have acknowledged all main sources of help. Where the thesis is based on work done by myself jointly with others, I have made exactly what was done by others and what I have contributed myself. Hanoi, December 2017 PhD STUDENT Thi Huong Giang DOAN SUPERVISORS Dr. Hai VU Dr. Thi Thanh Hai TRAN i ACKNOWLEDGEMENT This thesis was written during my doctoral study at International Research In- stitute Multimedia, Information, Communication and Applications (MICA), Hanoi University of Science and Technology (HUST). It is my great pleasure to thank all the people who supported me for completing this work. First, I would like to express my sincere gratitude to my advisors Dr. Hai Vu and Dr. Thi Thanh Hai Tran for the continuous support of my Ph.D. study and related re- search, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D. study. Besides my advisors, I would like to thank the scientists and the authors of the published works which are cited in this thesis, and I am provided with valuable infor- mation resources from their works for my thesis. The attention at scientific conferences have always been a great experience for me to receive many the useful comments. In the process of implementation and completion of my research, I have received many supports from the board of MICA directors. My sincere thanks go to Prof. Yen Ngoc Pham, Prof. Eric Castelli and Dr. Son Viet Nguyen, who provided me with an opportunity to join researching works in MICA institute, and who gave access to the laboratory and research facilities. Without their precious support would it have been being impossible to conduct this research. As a Ph.D. student of 911 programme, I would like to thanks 911 programme for their financial support during my Ph.D course. I also gratefully acknowledge the finan- cial support for publishing papers and conference fees from research projects T2014-100, T2016-PC-189, and T2016-LN-27. I would like to thank my colleagues at Computer Vision Department and Multi-Lab of MICA institute over the years both at work and outside of work. Special thanks to my family. Words can not express how grateful I am to my mother and father for all of the sacrifices that they have made on my behalf. I would also like to thank my beloved husband. Thank you for supporting me for everything. Hanoi, December 2017 Ph.D. Student Thi Huong Giang DOAN ii CONTENTS DECLARATION OF AUTHORSHIP i ACKNOWLEDGEMENT ii CONTENTS vi SYMBOLS vii LIST OF TABLES xi LIST OF FIGURES xvi 1 LITERATURE REVIEW 8 1.1 Completed hand gesture recognition systems for controlling home appli- ances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.1 GUI device dependent systems . . . . . . . . . . . . . . . . . . . 8 1.1.2 GUI device independent systems . . . . . . . . . . . . . . . . . 14 1.2 Hand detection and segmentation . . . . . . . . . . . . . . . . . . . . . 18 1.2.1 Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.2.2 Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.2.3 Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2.4 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.2.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.3 Hand gesture spotting system . . . . . . . . . . . . . . . . . . . . . . . 24 1.3.1 Model-based approaches . . . . . . . . . . . . . . . . . . . . . . 25 1.3.2 Feature-based approaches . . . . . . . . . . . . . . . . . . . . . 27 1.3.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.4 Dynamic hand gesture recognition . . . . . . . . . . . . . . . . . . . . . 29 1.4.1 HMM-based approach . . . . . . . . . . . . . . . . . . . . . . . 30 1.4.2 DTW-based approach . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.3 SVM-based approach . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.4 Deep learning-based approach . . . . . . . . . . . . . . . . . . . 34 1.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 35 2 A NEW DYNAMIC HAND GESTURE SET OF CYCLIC MOVE- MENT 37 iii 2.1 Defining dynamic hand gestures . . . . . . . . . . . . . . . . . . . . . . 37 2.2 The existing dynamic hand gesture datasets . . . . . . . . . . . . . . . 38 2.2.1 The published dynamic hand gesture datasets . . . . . . . . . . 38 2.2.1.1 The RGB hand gesture datasets . . . . . . . . . . . . . 38 2.2.1.2 The Depth hand gesture datasets . . . . . . . . . . . . 40 2.2.1.3 The RGB and Depth hand gesture datasets . . . . . . 41 2.2.2 The non-published hand gesture datasets . . . . . . . . . . . . . 44 2.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.3 Definition of the closed-form pattern of gestures and phasing issues . . 47 2.3.1 A conducting commands of a dynamic hand gestures set . . . . 47 2.3.2 Definition of the closed-form pattern of gestures and phasing issues 48 2.3.3 Characteristics of dynamic hand gesture set . . . . . . . . . . . 50 2.4 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.1 MICA1 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.4.2 MICA2 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.4.3 MICA3 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.4.4 MICA4 dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 HAND DETECTION AND GESTURE SPOTTING WITH USER- GUIDE SCHEME 56 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2 Heuristic user-guide scheme . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.2 Proposed framework . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2.3 Estimating heuristic parameters . . . . . . . . . . . . . . . . . . 60 3.2.3.1 Estimating parameters of background model for body detection . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.3.2 Estimating the distance from hand to the Kinect sensor for extracting hand candidates . . . . . . . . . . . . . 62 3.2.3.3 Estimating skin color parameters for pruning hand regions 63 3.2.4 Hand detection phase using heuristic parameters . . . . . . . . . 65 3.2.4.1 Hand detection . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.2 Hand posture recognition . . . . . . . . . . . . . . . . 66 3.3 Dynamic hand gesture spotting . . . . . . . . . . . . . . . . . . . . . . 66 3.3.1 Catching buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.3.2 Spotting dynamic hand gesture . . . . . . . . . . . . . . . . . . 67 3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.4.1 The required learning time for end-users . . . . . . . . . . . . . 71 iv 3.4.2 The computational time for hand segmentation and recognition 73 3.4.3 Performance of the hand region segmentations . . . . . . . . . . 75 3.4.3.1 Evaluate the hand segmentation . . . . . . . . . . . . 75 3.4.3.2 Compare the hand posture recognition results . . . . . 75 3.4.4 Performance of the gesture spotting algorithm . . . . . . . . . . 76 3.5 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.5.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.5.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4 DYNAMIC HAND GESTURE REPRESENTATION AND RECOG- NITION USING SPATIAL-TEMPORAL FEATURES 79 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 4.2 Proposed framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.1 Hand representation from spatial and temporal features . . . . . 81 4.2.1.1 Temporal features extraction . . . . . . . . . . . . . . 81 4.2.1.2 Spatial features extraction using linear reduction space 83 4.2.1.3 Spatial features extraction using non-linear reduction space . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.2.2 DTW-based phase synchronization and KNN-based classification 86 4.2.2.1 Dynamic Time Warping for phase synchronization . . 86 4.2.2.2 Dynamic hand gesture recognition using K-NN method 88 4.2.3 Interpolation-based synchronization and SVM Classification . . 89 4.2.3.1 Dynamic hand gesture representation . . . . . . . . . . 89 4.2.3.2 Quasi-periodic dynamic hand gesture pattern . . . . . 91 4.2.3.3 Phase synchronization using hand posture interpolation 94 4.2.3.4 Dynamic hand gesture recognition using difference clas- sifications . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.1 Influence of temporal resolution on recognition accuracy . . . . 97 4.3.2 Tunning kernel scale parameters RBF-SVM classifier . . . . . . 98 4.3.3 Performance evaluation of the proposed method . . . . . . . . . 99 4.3.4 Impacts of the phase normalization . . . . . . . . . . . . . . . . 100 4.3.5 Further evaluations on public datasets . . . . . . . . . . . . . . 101 4.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5 CONTROLLING HOME APPLIANCES USING DYNAMIC HAND GESTURES 105 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 v 5.2 Deployment of control systems using hand gestures . . . . . . . . . . . 105 5.2.1 Assignment of hand gestures to commands . . . . . . . . . . . . 105 5.2.2 Different modes of operations carried out by hand gestures . . . 107 5.2.2.1 Different states of lamp and their transitions . . . . . . 107 5.2.2.2 Different states of fan and their transition . . . . . . . 108 5.2.3 Implementation of the control system . . . . . . . . . . . . . . . 108 5.2.3.1 Main components of the control system using hand ges- tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.2.3.2 Integration of hand gesture recognition modules . . . . 109 5.3 Experiments of control systems using hand gestures . . . . . . . . . . . 115 5.3.1 Environment and material setup . . . . . . . . . . . . . . . . . . 115 5.3.2 Pre-built script . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3.3.1 Evaluation of hand gesture recognition . . . . . . . . . 118 5.3.3.2 Evaluation of time costs . . . . . . . . . . . . . . . . . 119 5.3.4 Evaluation of usability . . . . . . . . . . . . . . . . . . . . . . . 120 5.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Bibliography 126 vi ABBREVIATIONS TT Abbreviation Meaning 1 ANN Artifical Neural Network 2 ASL American Sign Language 3 BB Bounding Box 4 BGS Background Subtraction 5 BW Baum Welch 6 BOW Bag Of Words 7 C3D Convolutional 3D 8 CD Compact Disc 9 CIF Common Intermediate Format 10 CNN Convolution Neural Network 11 CPU Central Processing Unit 12 CRFs Conditional Random Fields 13 CSI Channel State Information 14 DBN Deep Belief Network 15 DDNN Deep Dynamic Neural Networks 16 DoF Degree of Freedom 17 DT Decision Tree 18 DTM Dense Trajectories Motion 19 DTW Dynamic Time Warping 20 FAR False Acceptance Rate 21 FD Fourier Descriptor 22 FP False Positive 23 FN False Negative 24 FSM Finite State Machine 25 fps frame per second 26 GA Genetic Algorithm 27 GMM Gaussian Mixture Model 28 GT Ground True 29 GUI Graphic User Interface 30 HCI Human Computer Interaction vii 31 HCRFs Hidden Conditional Random Fields 32 HNN Hopfield Neural Network 33 HMM Hidden Markov Model 34 HOG Histogram of Oriented Gradient 35 HSV Hue Saturation Value 36 ID IDentification 37 IP Internet Protocol 38 IR InfRared 39 ISOMAP ISOmetric MAPing 40 JI Jaccard Index 41 KLT Kanade Lucas Tomasi 42 KNN K Nearest Neighbors 43 LAN Local Area Network 44 LE Laplacian Eigenmaps 45 LLE Locally Linear Embedding 46 LRB Left Right Banded 47 MOG Mixture of Gaussian 48 MFC Microsoft Founding Classes 49 MSC Mean Shift Clustering 50 MR Magic Ring 51 NB Naive Bayesian 52 PC Persional Computer 53 PCA Principal Component Analysis 54 PDF Probability Distribution Function 55 PNG Portable Network Graphics 56 QCIF Quarter Common Intermediate Format 57 RAM Random Acess Memory 58 RANSAC RANdom SAmple Consensus 59 RBF Radial Basic Function 60 RF Random Forest 61 RGB Red Green Blue 62 RGB-D Red Green Blue Depth 63 RMSE Root Mean Square Error 64 ROI Region of Interest 65 RNN Recurrent Neural Network viii 66 SIFT Scale Ivariant Feature Transform 67 SVM Support Vector Machine 68 STE Short Time Energy 69 STF Spatial Temporal Feature 70 ToF Time of Flight 71 TN True Negative 72 TP True Positive 73 TV TeleVion 74 XML Xextensible Markup Languag ... teraction based on visual recognition using volumegrams of local binary patterns . In Proceedings of The IEEE International Conference on Consumer Electronics (ICCE), pp. 583–584. [83] Marcel S., Bernier O., Viallet J.E., and Collobert D. (2000). Hand gesture recog- nition using input-output hidden Markov models . In Proceedings of The 4th IEEE International Conference on Automatic Face and Gesture Recognition (FG), pp. 456–461. [84] Martin J., Devin V., and Crowley J.L. (1998). Active hand tracking . In Proceed- ings of The 3rd IEEE International Conference on Automatic Face and Gesture Recognition (FG), pp. 573–578. [85] Matnani P. (2015). Glove Based and Accelerometer based Gesture Control: A Literature. International Journal of Research and Engineering (IJRE), 3(6):pp. 216–221. [86] McGuinness K. and O Connor N.E. (2010). A comparative evaluation of interac- tive segmentation algorithms . Pattern Recognition Journal , 43(2):pp. 434–444. [87] Molchanov P., Yang X., Gupta S., Kim K., Tyree S., and Kautz J. (2016). Online detection and classification of dynamic hand gestures with recurrent 3d convolu- tional neural networks . In Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4207–4215. [88] Molina J., Alessandro M.E.v., Pardas M., Ferran C., Bescos J., Marques F., and Martinez J.M. (2013). Real-time user independent hand gesture recognition from time-of-flight camera video using static and dynamic models . Machine Vision and Applications , 24:pp. 187–204. [89] Morguet P. and Lang M. (1998). Spotting dynamic hand gestures in video im- age sequences using hidden markov models . In Proceedings of The International Conference on Image Processing (ICIP), volume 3, pp. 193–197. 133 [90] Mun˜oz Salinas R., Medina-Carnicer R., Madrid-Cuevas F.J., and Carmona- Poyato A. (2008). Depth silhouettes for gesture recognition. Pattern Recognition Letters Journal , 29(3):pp. 319–329. [91] Nguyen V.T., Le T.L., Tran T.T.H., Remy M., and Vincent C. (2015). A New Hand Representation Based on Kernels for Hand Posture Recognition. In Pro- ceedings of The 11th IEEE International Conference on Automatic Face and Gesture Recognition (FG), volume 1, pp. 1–6. [92] Nichols J., Myers B.A., Higgins M., Hughes J., Harris T.K., Rosenfeld R., and Pignol M. (2002). Generating remote control interfaces for complex appliances . In Proceedings of The 15th annual ACM symposium on User interface software and technology (UIST), pp. 161–170. [93] Ohn-bar E., Member S., and Trivedi M.M. (2014). Hand Gesture Recognition in Real Time for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations . IEEE Transactions on Intelligent Transportation System, 15(6):pp. 2368–2377. [94] Ong S.C.W., Ranganath S., and Venkatesh Y.V. (2006). Understanding gestures with systematic variations in movement dynamics . Pattern Recognition Journal , 39(9):pp. 1633–1648. [95] Oreifej O. and Liu Z. (2013). HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences . In Proceedings of The IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR), pp. 716–723. [96] Oz C. and Leu C. (2011). American sign language word recognition with a sen- sory glove using artificial neural networks . Engineering Applications of Artificial Intelligence Journal (EAAI), 24(7):pp. 1204–1213. [97] Park M., Hasan M., Kim J., and Chae O. (2012). Hand Detection and Tracking Using Depth and Color Information. [98] Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., and Duchesnay E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:pp. 2825– 2830. [99] Pisharady P.K., Vadakkepat P., and Loh A.P. (2012). Attention Based Detection and Recognition of Hand Postures Against Complex Backgrounds . International Journal of Computer Vision (IJCV), 101:pp. 403–419. 134 [100] Plouffe G. and Cretu A.M. (2016). Static and dynamic hand gesture recognition in depth data using dynamic time warping . IEEE Transactions on Instrumentation and Measurement , 65(2):pp. 305–316. [101] Poularakis S. and Katsavounidis I. (2014). Finger detection and hand posture recognition based on depth information. In Proceedings of The IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4329– 4333. [102] Prajapat S. and Upadhyay H. (2017). of-home-appliances-using-raspberry-pi-part-2/ . [103] Premaratne P. and Nguyen Q. (2007). Consumer electronics control system based on hand gesture moment invariants . IET Computer Vision, 1(1):pp. 35–41. [104] Quinlan J.R. (1986). Induction of decision trees . Machine Learning Journal , 1(1):pp. 81–106. [105] Ramamoorthy A., Vaswani N., Chaudhury S., and Banerjee S. (2003). Recogni- tion of dynamic hand gestures . Journal of Pattern Recognition, 36(9):pp. 2069 – 2081. [106] Ramamoorthy R. and Keerthana K. (2015). Hand Gesture Based Television Con- trol, journal= Proceedings of The National Conference on Research Advances in Communication, Computation, Electrical Science and Structures (NCRAC- CESS). (8):pp. 41–43. [107] Rashid O., Al-Hamadi A., and Michaelis B. (2010). Integration of gesture and pos- ture recognition systems for interpreting dynamic meanings using particle filter . In Proceedings of The International Conference of Soft Computing and Pattern Recognition, pp. 47–50. [108] Rautaray, S. S., and Agrawal A. (2015). Vision based hand gesture recognition for human computer interaction: A survey . Artificial Intelligence Review Journal , 43(1):pp. 1–54. [109] Rautaray S. and Agrawal A. (2015). Vision based hand gesture recognition for human computer interaction: a survey . Artificial Intelligence Review Journal , 43(1):pp. 1–54. [110] Ravikiran J., Mahesh K., Mahishi S., Dheeraj R., Sudheender S., and Pujari N.V. (2009). Finger Detection for Sign Language Recognition. Proceedings of The International MultiConference of Engineers and Computer Scientists (IMECS), I:pp. 489–493. 135 [111] Ren Z., Yuan J., and Zhang Z. (2011). Robust Hand Gesture Recognition Based on Finger-Earth Movers Distance with a Commodity Depth Camera. In Proceedings of The 19th ACM international conference on Multimedia (MM), pp. 1093–1096. [112] R.Mccartney J. Yuan H.B. (2015). Gesture Recognition with the Leap Motion Controller Gesture Recognition with the Leap Motion Controller . In Interna- tional Conference on Image Processing, Computer Vision and Pattern Recogni- tion (IPCV), pp. 2–9. [113] Roweis S.T. and Saul L.K. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding . Science, 290:pp. 2323 – 2326. [114] S. Escalera X. Baro J.G.M.A.B.M.M.M.R.V.P.L.H.J.E.J.S. and Guyon I. (2014). ChaLearn Looking at People Challenge 2014: Dataset and results . In The Euro- pean Workshops on Computer Vision (WECCV), pp. 1–8. [115] S. Mohamed Mansoor Roomi R.J.P. and Jayalakshmi H. (2010). Hand Gesture Recognition for Human-Computer Interaction. Journal of Computer Science, 6(9):pp. 1002–1007. [116] Sangineto E. and Cupelli M. (2012). Real-time viewpoint-invariant hand local- ization with cluttered backgrounds . Image Vision Computting Journal , 30(1):pp. 26–37. [117] Sharma P.K., Sheoran R., and Kathania D.K. (2015). A Study of Hand Gesture Technique to Communicate with a Robot . International Journal of Engineering Research and Technology (IJERT), 4:pp. 12–13. [118] Shen X., Hua G., Williams L., and Wu Y. (2012). Dynamic hand gesture recog- nition: An exemplar-based approach from motion divergence fields . Image and Vision Computing Journal , 30(3):pp. 227–235. [119] Shimada A., Yamashita T., and i. Taniguchi R. (2013). Hand gesture based tv control system. In Proceedings of The 19th Korea-Japan Joint Workshop on Frontiers of Computer Vision, pp. 121–126. [120] Shin S. and Sung W. (2016). Dynamic hand gesture recognition for wearable devices with low complexity recurrent neural networks . The Computing Research Repository (CoRR), abs/1608.04080:pp. 3–6. [121] Shitole S.M., Patil S.B., and Narote S.P. (2013). Article: Dynamic hand ges- ture recognition using pca, pruning and ann. International Journal of Computer Applications (IJCA), 74(2):pp. 24–29. 136 [122] Sigalas M., Baltzakis H., and Trahanias P. (2010). Gesture recognition based on arm tracking for human-robot interaction. In Proceedings of The IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5424– 5429. [123] Smedt Q.D., Wannous H., and Vandeborre J.P. (2016). lille.fr/dhgdataset/.. [124] Smedt Q.D., Wannous H., and Vandeborre J.P. (2016). Skeleton-based dynamic hand gesture recognition. In Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1206–1214. [125] Sohn M.K., Lee S.H., Kim D.J., Kim B., and Kim H. (2012). A comparison of 3d hand gesture recognition using dynamic time warping . In Proceedings of The 27th Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 418–422. [126] Solanki U.V. and Desai N.H. (2011). Hand gesture based remote control for home appliances: Handmote. In Proceedings of The IEEE World Congress on Information and Communication Technologies (WICT), pp. 419–423. [127] Song L. and Takatsuka M. (2005). Real-time 3d finger pointing for an aug- mented desk . In Proceedings of The 6th Australasian Conference on User Inter- face (AUIC), volume 40, pp. 99–108. [128] Stauffer C. and Grimson W. (1999). Adaptive background mixture models for real-time tracking . In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), volume 2, pp. 246 – 252. [129] Suk H.I., Sin B.K., and Lee S.W. (2010). Hand gesture recognition based on dynamic bayesian network framework . Pattern Recognition Journal , 43(9):pp. 3059–3072. [130] Tenenbaum J.B., de Silva V., and Langford J.C. (2000). A global geometric frame- work for nonlinear dimensionality reduction. Science Journal , 290(5500):pp. 2319–2323. [131] Tran D., Bourdev L., Fergus R., Torresani L., and Paluri M. (2015). Learning Spatiotemporal Features With 3D Convolutional Networks . In Proceedings of The IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497. [132] Tran T.T.H. and Nguyen T.T.M. (2010). Invariant lighting hand posture classi- fication. In Proceedings of The 2010 IEEE International Conference on Progress in Informatics and Computing (PIC), volume 2, pp. 827–831. 137 [133] Verma R. and Dev A. (2009). Vision based hand gesture recognition using finite state machines and fuzzy logic. In Proceedings of The International Conference on Ultra Modern Telecommunications Workshops , pp. 1–6. [134] Viola P. and Jones M.J. (2004). Robust real-time face detection. International Journal of Computer Vision (IJCV), 57(2):pp. 137–154. [135] W. Gao G. Fang D.Z. and Chen Y. (2004). Transition movement models for large vocabulary continuous sign language recognition. In Proceedings of The 6th IEEE International Conference Automatic Face and Gesture Recognition (FG), pp. 553 – 558. [136] Wang T.S., Shum H.Y., Xu Y.Q., and Zheng N.N. (2001). Unsupervised analysis of human gestures . In Proceedings of The 2nd IEEE Pacific Rim Conference on Multimedia Beijing Advances in Multimedia Information Processing (PCM), volume 2195, pp. 174–181. [137] WangGW Zhang C Z.J. (2012). An application of classifier combinationmethods in hand gesture recognition. Mathematical Problems in Engineering Journal , 2012:pp. 1–17. [138] Wu D., Pigou L., Kindermans P.j., Le N., Shao L., Dambre J., and Odobez J.m. (2016). Deep Dynamic Neural Networks for Multimodal Gesture Segmen- tation and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 38(8):pp. 1–16. [139] Xu D. (2006). A neural network approach for hand gesture recognition in virtual reality driving training system of spg . In Proceedings of The 18th International Conference on Pattern Recognition (ICPR), volume 3, pp. 519–522. [140] Y. S., D. D., and R. D. (2011). Tracking Body and Hands For Gesture Recog- nition: NATOPS Aircraft Handling Signals Database. In Proceedings of The 9th IEEE International Conference on Automatic Face and Gesture Recognition (FG), pp. 500–506. [141] Yang H.D. (2015). Sign Language Recognition with the Kinect Sensor Based on Conditional Random Fields . Sensors Journal , 15(1):pp. 135–147. [142] Yang H.D., Sclaroff S., and Lee S.W. (2009). Sign Language Spotting with a Threshold Model Based on Conditional Random Fields . IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 31(7):pp. 1264–1277. [143] Yang S.E., Do J.H., Jang H., Jung J.W., and Bien Z. (2006). Advanced Soft Re- mote Control System in Human-friendliness . International Journal of Soft Com- 138 puting and Intelligent Systems, and Symposium on Advanced Intelligent Systems (SCIS and ISIS), 2006:pp. 218–222. [144] Yang X. and Tian Y. (2014). Super Normal Vector for Action Recognition Using Depth Sequences . In Proceedings of The IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 804–811. [145] Yang Z., Li Y., Chen W., and Zheng Y. (2012). Dynamic hand gesture recognition using hidden markov models . In Proceedings of The 7th International Conference on Computer Science Education (ICCSE), pp. 360–365. [146] Yuan R., Cheng J., Li P., Chen G., Xie C., and Xie Q. (2010). View invariant hand gesture recognition using 3d trajectory . In Proceedings of The 8th World Congress on Intelligent Control and Automation, pp. 6315–6320. [147] Zabulis X., Baltzakis H., and Argyros A. (2009). Vision-based Hand Gesture Recognition for Human Computer Interaction. Lawrence Erlbaum Associates, Inc. (LEA). [148] Zaman M.F., Mossarrat S.T., Islam F., and Karmaker D. (2015). Real-time hand detection and tracking with depth values . In Proceedings of The International Conference on Advances in Electrical Engineering (ICAEE), pp. 129–132. [149] Zhang X., Chen X., Wang W.h., Yang J.h., Lantz V., and Wang K.q. (2009). Hand gesture recognition and virtual game control based on 3d accelerometer and emg sensors . In Proceedings of The 14th International Conference on Intelligent User Interfaces (IUI), pp. 401–406. [150] Zhang Y., Yao Y., and Luo Y. (2015). An improved hmm/svm dynamic hand gesture recognition algorithm. In Proceedings of The SPIE , volume 9672, pp. 96720D–96720D–7. [151] Zou Z., Premaratne P., Monaragala R., Bandara N., and Premaratne M. (2010). Dynamic hand gesture recognition system using moment invariants . In Proceed- ings of The 5th International Conference on Information and Automation for Sustainability , pp. 108–113. 139
File đính kèm:
- dynamic_hand_gesture_recognition_using_rgb_d_images_for_huma.pdf
- Thông tin mới của Luận án.pdf
- Tóm tắt tiếng Anh.pdf
- Tóm tắt tiếng Việt.pdf