Luận án Nghiên cứu nuôi cấy tế bào cây nghệ đen (Curcuma zedoaria Roscoe) và khảo sát khả năng tích lũy một số hợp chất có hoạt tính sinh học của chúng
Trong nhiều thế kỷ qua, loài người đã dựa chủ yếu vào thực vật như là
nguồn cung cấp carbohydrate, protein và chất béo làm thực phẩm. Hơn nữa, thực
vật cũng là nguồn cung cấp phong phú các hợp chất tự nhiên dùng làm dược
phẩm, hóa chất nông nghiệp, hương liệu, chất màu, thuốc trừ sâu sinh học hoặc
các chất phụ gia thực phẩm có giá trị [132]. Những sản phẩm này được biết như
là các chất trao đổi thứ cấp, được hình thành với một lượng rất nhỏ trong cây
(thường nhỏ hơn 1% khối lượng khô) và chức năng trao đổi chất chưa được biết
đầy đủ. Chúng được xem là sản phẩm của các phản ứng hóa học của thực vật với
môi trường hoặc là sự bảo vệ hóa học chống lại vi sinh vật và động vật [177].
Những nghiên cứu về các hợp chất thứ cấp có nguồn gốc thực vật đã phát triển
từ cuối những năm 50 của thế kỷ XX và đến nay có khoảng hơn 80.000 hợp chất
thứ cấp khác nhau ở thực vật đã đuợc công bố [19], [23].
Theo Tổ chức Y tế Thế giới (WHO), có đến 80% dân số thế giới sử dụng
thảo dược làm thuốc để chữa bệnh và chăm sóc sức khỏe. Việc khai thác nguồn
dược liệu tự nhiên từ thực vật đang trở thành một vấn đề quan trọng mang tính
toàn cầu và chúng ngày càng được thương mại hóa nhiều hơn. Tuy nhiên, vấn đề
đặt ra hiện nay là nơi sống tự nhiên của các loài cây thuốc đang bị biến mất
nhanh chóng do sự biến đổi của khí hậu toàn cầu cũng như sự khai thác bừa bãi
của con người. Như vậy, sản xuất các hợp chất thứ cấp thực vật bằng con đường
canh tác truyền thống và tổng hợp hóa học sẽ có nhiều hạn chế, khó có thể đáp
ứng đủ nhu cầu dược liệu ngày càng tăng trong tương lai [188]. Điều này buộc
các nhà khoa học cần phải tính đến công nghệ nuôi cấy tế bào thực vật như một
con đường tiềm năng để cung cấp nguyên liệu cho ngành công nghiệp dược
phẩm [106]
Tóm tắt nội dung tài liệu: Luận án Nghiên cứu nuôi cấy tế bào cây nghệ đen (Curcuma zedoaria Roscoe) và khảo sát khả năng tích lũy một số hợp chất có hoạt tính sinh học của chúng
LỜI CẢM ƠN Hoàn thành luận án này, trước hết chúng tôi xin bày tỏ lòng biết ơn sâu sắc đến GS. TS. Nguyễn Hoàng Lộc và PGS. TS. Cao Đăng Nguyên đã quan tâm giúp đỡ và hướng dẫn tận tình. Xin được bày tỏ lòng biết ơn tới các cán bộ, giảng viên của Phòng thí nghiệm Các hợp chất thứ cấp, Viện Tài nguyên-Môi trường và Công nghệ sinh học, Đại học Huế; Bộ môn Sinh lý-Sinh hóa, Khoa Sinh học, Trường đại học Khoa học, Đại học Huế đã giúp đỡ chúng tôi trong suốt thời gian thực hiện đề tài. Xin cám ơn Ban Giám đốc, Ban Đào tạo Sau đại học của Đại học Huế; Ban Giám hiệu, Phòng Nghiên cứu Khoa học và Hợp tác Quốc tế, Phòng Đào tạo Sau đại học Trường đại học Khoa học; Ban Chủ nhiệm Khoa Sinh học, Trường đại học Khoa học, Đại học Huế; Ban Giám hiệu, Khoa Sinh-Môi trường, Trường Đại học Sư phạm - Đại học Đà Nẵng đã có nhiều giúp đỡ quí báu, tạo mọi điều kiện tốt nhất để chúng tôi hoàn thành luận án. Xin cám ơn các đồng nghiệp, bạn bè đã nhiệt tình động viên, hỗ trợ chúng tôi hoàn thành luận án. Cuối cùng, xin được bày tỏ lòng biết ơn đến những người thân trong gia đình đã đóng góp một phần không nhỏ trong việc hoàn thành luận án này. Huế, ngày 15 tháng 02 năm 2014 Tác giả Võ Châu Tuấn LỜI CAM ĐOAN Tôi xin cam đoan đây là công trình nghiên cứu của tôi. Các số liệu, kết quả trình bày trong luận án là trung thực, khách quan, nghiêm túc và chưa từng được ai công bố trong bất kỳ công trình nào khác. Nếu có gì sai sót, tôi xin chịu hoàn toàn trách nhiệm. Tác giả Võ Châu Tuấn MỤC LỤC LỜI CÁM ƠN LỜI CAM ĐOAN MỤC LỤC BẢNG CHÚ THÍCH CHỮ VIẾT TẮT DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH MỞ ĐẦU .................................................................................................................... 1 1. TÍNH CẤP THIẾT CỦA ĐỀ TÀI............................................................... 1 2. MỤC TIÊU NGHIÊN CỨU ........................................................................ 3 3. Ý NGHĨA KHOA HỌC VÀ THỰC TIỄN ................................................. 3 4. ĐÓNG GÓP MỚI CỦA LUẬN ÁN ............................................................ 4 Chƣơng 1: TỔNG QUAN TÀI LIỆU ...................................................................... 5 1.1. NUÔI CẤY TẾ BÀO THỰC VẬT ................................................................... 5 1.1.1. Sơ lƣợc lịch sử nuôi cấy tế bào thực vật ............................................... 5 1.1.2. Nuôi cấy huyền phù tế bào thực vật ..................................................... 6 1.1.2.1. Nuôi cấy callus .................................................................................. 6 1.1.2.2. Nuôi cấy huyền phù tế bào ................................................................ 7 1.1.2.3. Các thông số đánh giá khả năng sinh trưởng của tế bào ............... 10 1.1.2.4. Một số yếu tố ảnh hưởng đến quá trình nuôi cấy tế bào ................ 12 1.1.2.5. Nuôi cấy tế bào thực vật ở qui mô lớn ............................................ 16 1.2. SỰ TÍCH LŨY CÁC HỢP CHẤT THỨ CẤP TRONG TẾ BÀO THỰC VẬT NUÔI CẤY IN VITRO................................................................................... 19 1.2.1. Vai trò của các hợp chất thứ cấp ở thực vật ......................................... 19 1.2.2. Các nhóm hợp chất thứ cấp chủ yếu ở thực vật ................................ 19 1.2.2.1. Nhóm terpene .................................................................................. 20 1.2.2.2. Nhóm phenol ................................................................................... 20 1.2.2.3. Các hợp chất chứa nitrogen ............................................................ 20 1.2.3. Những nghiên cứu sản xuất các hợp thứ cấp từ nuôi cấy tế bào thực vật .............................................................................................................................. 21 1.2.3.1. Những nghiên cứu ngoài nước ........................................................ 21 1.2.3.2. Những nghiên cứu trong nước ........................................................ 25 1.3. GIỚI THIỆU VỀ CÂY NGHỆ ĐEN .............................................................. 28 1.3.2. Thành phần hóa học ............................................................................. 28 1.3.3. Công dụng ............................................................................................. 30 1.3.3.1. Công dụng cổ truyền ....................................................................... 30 1.3.3.2. Các hoạt tính sinh học .................................................................... 30 1.3.4. Tình hình nghiên cứu nuôi cấy in vitro của cây nghệ đen ................ 35 Chƣơng 2: ĐỐI TƢỢNG, NỘI DUNG VÀ PHƢƠNG PHÁP NGHIÊN CỨU . 37 2.1. ĐỐI TƢỢNG NGHIÊN CỨU ......................................................................... 37 2.2. NỘI DUNG NGHIÊN CỨU ............................................................................ 37 2.3. PHƢƠNG PHÁP NGHIÊN CỨU ................................................................... 38 2.3.1. Nuôi cấy callus ...................................................................................... 39 2.3.2. Nuôi cấy huyền phù tế bào................................................................... 39 2.3.2.1. Nuôi cấy huyền phù tế bào trong bình tam giác ............................. 39 2.3.2.2. Nuôi cấy huyền phù tế bào trong hệ lên men .................................. 40 2.3.3. Xác định khả năng sinh trƣởng của tế bào ........................................ 40 2.3.4. Định lƣợng tinh dầu ............................................................................. 41 2.3.5. Định lƣợng curcumin ........................................................................... 41 2.3.6. Định lƣợng polysaccharide hòa tan trong nƣớc ................................ 42 2.3.7. Xác định sesquiterpene ........................................................................ 42 2.3.8. Xác định hoạt tính kháng khuẩn của tinh dầu .................................. 43 2.3.9. Xử lý thống kê ....................................................................................... 43 Chƣơng 3: KẾT QUẢ NGHIÊN CỨU VÀ THẢO LUẬN .................................. 44 3.1. NUÔI CẤY CALLUS NGHỆ ĐEN ................................................................ 44 3.2. NUÔI CẤY HUYỀN PHÙ TẾ BÀO TRONG BÌNH TAM GIÁC .............. 47 3.2.1. Ảnh hƣởng của cỡ mẫu nuôi cấy ......................................................... 47 3.2.2. Ảnh hƣởng của tốc độ lắc .................................................................... 49 3.2.3. Ảnh hƣởng của chất ĐHST ................................................................. 51 3.2.3.1. Ảnh hưởng của BA .......................................................................... 51 3.2.3.2. Ảnh hưởng của 2,4-D ...................................................................... 52 3.2.3.3. Ảnh hưởng của 2,4-D và BA ........................................................... 52 3.2.4. Ảnh hƣởng của nguồn carbon ............................................................. 54 3.2.4.1. Ảnh hưởng của sucrose ................................................................... 54 3.2.4.2. Ảnh hưởng của glucose ................................................................... 56 3.3. NUÔI CẤY TẾ BÀO HUYỀN PHÙ TRONG HỆ LÊN MEN ..................... 59 3.3.1. Khảo sát sinh trƣởng của tế bào ......................................................... 59 3.3.2. Ảnh hƣởng của điều kiện nuôi cấy...................................................... 61 3.3.2.1. Cỡ mẫu ............................................................................................ 61 3.3.2.2. Tốc độ khuấy ................................................................................... 62 3.3.2.3. Ảnh hưởng của tốc độ sục khí ......................................................... 63 3.4. KHẢO SÁT SỰ TÍCH LŨY MỘT SỐ HỢP CHẤT CÓ HOẠT TÍNH SINH HỌC TRONG TẾ BÀO NGHỆ ĐEN ......................................................... 65 3.4.1. Hàm lƣợng tinh dầu ............................................................................. 65 3.4.2. Hàm lƣợng polysaccharide hòa tan trong nƣớc tổng số ................... 67 3.4.3. Hàm lƣợng curcumin ........................................................................... 68 3.4.4. Xác định sesquiterpene ........................................................................ 73 3.5. HOẠT TÍNH KHÁNG KHUẨN CỦA TINH DẦU TẾ BÀO NGHỆ ĐEN ... 77 KẾT LUẬN VÀ ĐỀ NGHỊ ..................................................................................... 80 NHỮNG CÔNG TRÌNH ĐÃ ĐƢỢC CÔNG BỐ LIÊN QUAN ĐẾN LUẬN ÁN .................................................................................................................................. 82 TÀI LIỆU THAM KHẢO ...................................................................................... 83 PHỤ LỤC BẢNG CHÚ THÍCH CHỮ VIẾT TẮT BAP : 6-benzylaminopurine BA : 6-benzyladenine CIB : centrifugal impeller bioreator cs : cộng sự DMSO : dimethyl sulfoxide ĐC : đối chứng ĐHST : điều hòa sinh trưởng HPLC : high performance liquid chromatography (sắc ký hiệu năng cao áp) IAA : indoleacetic acid IBA : indolebutyric acid Kin : kinetin L : lít L-DOPA : L-3,4 -dihydrooxyphenylamine LPS : lipopolysaccharide MS : Murashige và Skoog (1962) NAA : naphthaleneacetic acid Nxb : nhà xuất bản TNF-α : tumor necrosis factor-alpha 2,4-D : 2,4-dichlorophenoxyacetic acid DANH MỤC CÁC BẢNG TT Tên bảng Trang 1 Bảng 3.1.Khả năng tạo callus từ bẹ lá của cây nghệ đen in vitro 44 2 Bảng 3.2. Ảnh hưởng của chất ĐHST lên sinh trưởng và phát sinh hình thái của callus 46 3 Bảng 3.3. Ảnh hưởng của cỡ mẫu lên sinh trưởng của tế bào nuôi cấy huyền phù trong bình tam giác 48 4 Bảng 3.4. Ảnh hưởng của tốc độ lắc lên sinh trưởng của tế bào nuôi cấy huyền phù trong bình tam giác 50 5 Bảng 3.5. Ảnh hưởng của BA lên sinh trưởng của tế bào nuôi cấy huyền phù trong bình tam giác 51 6 Bảng 3.6. Ảnh hưởng của 2,4-D lên sinh trưởng của tế bào nuôi cấy huyền phù trong bình tam giác 52 7 Bảng 3.7. Ảnh hưởng của 2,4-D và BA lên sinh trưởng của tế bào nuôi cấy huyền phù trong bình tam giác 53 8 Bảng 3.8. Ảnh hưởng của sucrose lên sinh trưởng của tế bào nuôi cấy huyền phù trong bình tam giác 54 9 Bảng 3.9. Ảnh hưởng của glucose lên sinh trưởng của tế bào nuôi cấy huyền phù trong bình tam giác 56 10 Bảng 3.10. Ảnh hưởng của fructose lên sinh trưởng của tế bào nuôi cấy huyền phù trong bình tam giác 57 11 Bảng 3.11. Ảnh hưởng của cỡ mẫu lên sinh trưởng của tế bào nuôi cấy huyền phù trong hệ lên men 10 L 62 12 Bảng 3.12. Ảnh hưởng của tốc độ khuấy lên sinh trưởng của tế bào nuôi cấy huyền phù trong hệ lên men 10 L 63 13 Bảng 3.13. Ảnh hưởng của tốc độ sục khí lên sinh trưởng của tế bào nuôi cấy huyền phù trong hệ lên men 10 L 64 14 Bảng 3.14. Hàm lượng tinh dầu của tế bào nghệ đen nuôi cấy trong hệ lên men 10 L 66 15 Bảng 3.15. Hàm lượng polysaccharide của tế bào nghệ đen nuôi cấy trong hệ lên men 10 L 67 16 Bảng 3.16. Hàm lượng curcumin của tế bào nghệ đen nuôi cấy trong hệ lên men 10 L 69 17 Bảng 3.17. Chiều cao phổ hấp thụ (mAU) của sesquiterpene trong tế bào nuôi cấy ở hệ lên men 10 L và tế bào củ nghệ tự nhiên 74 18 Bảng 3.18. Khả năng kháng khuẩn của tinh dầu tế bào nghệ đen 78 DANH MỤC CÁC HÌNH TT Tên hình Trang 1 Hình 2.1. Cây nghệ đen nuôi cấy in vitro 37 2 Hình 2.2. Sơ đồ thí nghiệm 38 3 Hình 3.1. Callus hình thành từ bẹ lá của cây nghệ đen in vitro (A) callus trắng và xốp, (B) callus trắng và mọng nước 45 4 Hình 3.2. Callus có màu vàng, rắn, rời rạc sau 14 ngày nuôi cấy 47 5 Hình 3.3. Dịch huyền phù tế bào nghệ đen sau 14 ngày nuôi cấy trong bình tam giác trên môi trường có 3% sucrose 55 6 Hình 3.4. Sinh trưởng của tế bào nghệ đen nuôi cấy trong bình tam giác trên môi trường MS có 3% sucrose; 0,5 mg/L BA và 1,5 mg/L 2,4-D, lắc 120 vòng/phút 58 7 Hình 3.5. Nuôi cấy tế bào nghệ đen trong bình tam giác 250 ml đặt trên máy lắc 59 8 Hình 3.6. Nuôi cấy tế bào nghệ đen trong hệ lên men 10 L 60 9 Hình 3.7. Sinh trưởng của tế bào nghệ đen trong hệ lên men nuôi cấy trên môi trường MS có 3% sucrose; 0,5 mg/L BA; 1,5 mg/L 2,4-D ; khuấy 120 vòng/phút; sục khí 2,0 L/phút, cỡ mẫu 100 g 60 10 Hình 3.8. Sinh khối tươi (A) và sinh khối khô (B) của tế bào nghệ đen sau 14 ngày nuôi cấy trong hệ lên men 10 L 61 11 Hình 3.9. Sinh trưởng của tế bào nghệ đen trong hê lên men nuôi cấy trên môi trường MS có 3% sucrose; 0,5 mg/L BA; 1,5 mg/L 2,4-D ; khuấy 150 vòng/phút; sục khí 2,5 L/phút, cỡ mẫu 200 g 65 12 Hình 3.10. Phổ HPLC của curcumin chuẩn (0,5 mg/ml) 71 13 Hình 3.11. Phổ HPLC curcumin của củ nghệ đen 01 năm tuổi ngoài tự nhiên 72 14 Hình 3.12. Phổ HPLC curcumin của tế bào nghệ đen sau 2 đến 18 ngày nuôi cấy trong hệ lên men 10 lít 73 15 Hình 3.13. Phổ HPLC của sesquiterpene. A: Củ nghệ đen tự nhiên; B: tế bào nghệ đen nuôi cấy trong hệ lên men 10 L từ 2 đến 18 ngày 76 16 Hình 3.14. Khả năng kháng khuẩn của tinh dầu nghệ đen 77 1 MỞ ĐẦU 1. TÍNH CẤP THIẾT CỦA ĐỀ TÀI Trong nhiều thế kỷ qua, loài người đã dựa chủ yếu vào thực vật như là nguồn cung cấp carbohydrate, protein và chất béo làm thực phẩm. Hơn nữa, thực vật cũng là nguồn cung cấp phong phú các hợp chất tự nhiên dùng làm dược phẩm, hóa chất nông nghiệp, hương liệu, chất màu, thuốc trừ sâu sinh học hoặc các chất phụ gia thực phẩm có giá trị [132]. Những sản phẩm này được biết như là các chất trao đổi thứ cấp, được hình thành với một lượng rất nhỏ trong cây (thường nhỏ hơn 1% khối lượng khô) và chức năng trao đổi chất chưa được biết đầy đủ. Chúng được xem là sản phẩm của các phản ứng hóa học của thực vật với môi trường hoặc là sự bảo vệ hóa học chống lại vi sinh vật và động vật [177]. Những nghiên cứu về các hợp chất thứ cấp có nguồn gốc thực vật đã phát triển từ cuối những năm 50 của thế kỷ XX và đến nay có khoảng hơn 80.000 hợp chất thứ cấp khác nhau ở thực vật đã đuợc công bố [19], [23]. Theo Tổ chức Y tế Thế giới (WHO), có đến 80% dân số thế giới sử dụng thảo dược làm thuốc để chữa bệnh và chăm sóc sức khỏe. Việc khai thác nguồn dược liệu tự nhiên từ thực vật đang trở thành một vấn đề quan trọng mang tính toàn cầu và chúng ngày càng được thương mại hóa nhiều hơn. Tuy nhiên, vấn đề đặt ra hiện nay là nơi sống tự nhiên của các loài cây thuốc đang bị biến mất nhanh chóng do sự biến đổi của khí hậu toàn cầu cũng như sự khai thác bừa bãi của con người. Như vậy, sản xuất các hợp chất thứ cấp thực vật bằng con đường canh tác truyền thống và tổng hợp hóa học sẽ có nhiều hạn chế, khó ... y of some medicinal plants from Malaysia”, American Journal of Applied Sciences 6(8), pp. 1613-1617. 97 125. Prakash G., Srivastava A.K. (2007), “Azadirachtin production in stirred tank reactors by Azadirachta indica suspension culture”, Process Biochem 42, pp. 93-97. 126. Priosoeryanto B.P., Sumarny R., Rahmadini Y., Nainggolan G.R.M., Andany S. (2001), “Growth inhibition effect of plants extract (Mussaenda pubescens and Curcuma zedoaria) on tumour cell lines in vitro”, Proceeding of the 2nd SEAG, South East Asian Germany Alumni- Network, Los Barios, The Philippines on August, pp. 27-31. 127. Raghuveer Gupta PS, Ali MM., Eranna D and Ramachandra SS. (2003), “Evaluation of anti-ulcer effect of root of Curcuma zedoaria in rats”, Indian Traditional Knowledge 2(4), pp. 375-377. 128. Rajasekaran T., Ravishankar G.A., Venkataraman L.V. (1991), “Influence of nutrient stress on pyrethrin production by cultured cells of pyrethrum (Chrysanthemum cinerariaefolium)”, Curr Sci 60, pp.705-707. 129. Ramawat K.G., Merillon J.M. (2004), Biotechnology Secondary Metabolites, Science Publishers, Inc. Plymouth, UK. 130. Rao B.R., Kumar V., Amrutha N., Jalaja N., Vaidyanath K., Rao A.M., Polavarapu S.R.R., Kishor P.B.K. (2008), “Effect of growth regulators, carbon source and cell aggregate size on berberine production from cell cultures of Tinospora cordifolia Miers”, Current Trends in Biotechnology and Pharmacy, 2(2), pp. 269-276. 131. Rao B.S., Shintre V.P., Simonsen J.L. (1928), “Essential oil from rhizome of Curcuma zedoaria Rosc.”, Soc Chem Ind 47, pp. 171-172. 132. Rao S.R., Ravishankar G.A. (2002), “Plant cell cultures: chemical factories of secondary metabolites”, Biotechnology Advances 20, pp. 101-153. 133. Ritterhaus E., Ulrich J., Westphal K. (1990), “Large-scale production of plant cell cultures”, Iaptc Newsl 61, pp. 2-10. 98 134. Rodríguez-Monroy M., Trejo-Espino J.L., Jimenez-Aparicio A., de la Luz M.M., Villarreal M.L., Trejo-Tapia G. (2004), “Evaluation of morphological properties of Solanum chrysotrichum cell cultues in a shake flask and fermentor and rheological properties of broths”, Food Technol. Biotechnol. 42 (3), pp. 153-158. 135. Ryu D.D.Y., Lee S.O., Romani R.J. (1990), “Determination of growth rate for plant cell cultures: comparative studies”. Biotechnol Bioeng 35, pp. 305-311. 136. Sakato K., Misawa M. (1974), “Effects of chemical and physical conditions on growth of Camptotheca acuminata cell cultures”, Agri Biol Chem 38, pp. 491-497. 137. Saralamp P., Chuakual W., Temsirikul R., Clayton T. (2000), Medicinal plants in Thailand. Volume 1, Amerin Printing and Publishing Public Co., Ltd., Bangkok, Thailand. 138. Sarin R. (2005), “Useful metabolites from plant tissue cultures”, Biotechnol 4, pp. 79-93. 139. Seo W.G., Hwang J.C., Kang S.K., Jin U.H., Suh S.J., Moon S.K. (2005), “Suppressive effect of Zedoariae rhizome on pulmonary metastasis of B16 melanoma cells”, Ethnopharmacol 101, pp. 249-257. 140. Sheper T. (2001), Advances in biochemical engineering biotechnology- plant cells (Vol 72), Springer-Verlag, Berlin Heideberg. 141. Shimomura K., Kitazawa T., Okamura N., Yagi A. (1991), “Tanshinone production in adventitious roots and regenerates of Salvia miltiorrhiza”, Nat Prod 54 (6), pp. 1583 -1587. 142. Shin K.H., Yoon K.Y., Cho T.S. (1994), “Pharmacologycal activities of sesquiterpenes from the rzhome of Curcuma zedoaria”, Saengyak Hakhoechi 25, pp. 221-225. 99 143. Shiobara Y., Asakawa Y., Kodama M., Yasuda K., Takemoto T. (1985), “Curcumenone, curcumanolide A and cucumanolide B, three sesquiterpenoids from Curcuma zedoaria”, Phytochemistry 24, pp. 2629-2933. 144. Shuler M.L., Kargi F. (2002), Bioprocess Engineering, Basic Concepts, 2nd edn. Prentice Hall, NJ, USA. 145. Singh G., Singh O.P., Maurya S. (2002), “Chemical and biocidal investigations on essential oils of some Indian Curcuma species”, Prog Crystal Growth and Charact 45, pp.75-81. 146. Smith J.I., Smart N.J., Misawa M., Kurz W.G.W., Tallevi S.G., DiCosmo F. (1987), “Increased accumulation of indole alkaloids by some cell lines of Catharanthus roseus in response to addition of vanadyl sulphate”, Plant Cell Rep 6, pp. 142-145. 147. Smollny T.H., Wichers T., Risk D., Van Zwam A., Shasavari A., Alfermann A.W. (1992), “Formation of lignans in suspension cultures of Linum album”, Planta Med Suppl 58, pp. 622. 148. Srivastava S., Srivastava A.K. (2007), “Hairy root culture for mass- production of high-value secondary metabolites”, Crit Rev Biotechnol 27, pp. 29-43. 149. Srvidya A.R., Yadev A.K., Dhanbal S.P. (2009), “Antioxidant and antimicrobial activity of rhizome of Curcuma aromatica and Curcuma zeodaria, leaves of Abutilon indicum”, Arch Pharm Sci & Res 1(1), pp. 14-19. 150. Stanly C., Bhatt A., Keng C.L. (2010), “A comparative study of Curcuma zedoaria and Zingiber zerumbet plantlet production using different micropropagation systems”, African Journal of Biotechnology 9(28), pp. 4326-4333. 100 151. Sun Y.L., Tang J., Gu X.H., Li D.Y. (2005), “Water-soluble polysaccharides from Angelica sinensis (Oliv.) Diels: Preparation, characterization, and bioacitivity”, Int Biol Macromol 36, pp. 283- 289. 152. Syu W.J., Shen C.C., Don M.J., Ou J.C., Lee G.H., Sun C.M. (1998), “Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria”, Nat Prod 61, pp. 1531-1534. 153. Taiz L., Zeiger E. (2006), Plant physiology, Sinauer Associates, Inc Publishers, Massachusetts, pp. 315-344. 154. Tal B., Rokem J.S., Goldberg I. (1983), “Factors affecting growth and product formation in plant cells grown in continuous culture”, Plant Cell Rep 2, pp. 219-222. 155. Tepsorn R. (2009), Antimicrobial activity of Thai traditional medicinal plants extract incorporated alginate-tapioca starch based edible films against food related Bacteria including foodborne pathogens, PhD Thesis, University of Hohenheim, Thailand. 156. Teramoto S., Komamine A. (1988), Biotechnology in agriculture and forestry, Medicinal and aromatic plants IV. Springer-Verlag, Berlin, Heidelberg, pp. 209-224. 157. Thanh N.T., Ket N.V., Yoeup P.K. (2007), “Effecting of medium composition on biomass and ginsenoside production in cell suspension culture of Panax vietnamensis Ha et Grushv”, VNU Journal of sicence Natural and Technology 23, pp. 269-274. 158. Thanh N.T., Ket N.V., Yoeup P.K. (2008), “Effects of macro elements on biomass and ginsenoside production in cell suspension culture of Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.)”, VNU Journal of sicence Natural and Technology 23, pp. 269-274. 101 159. Thanh N.T., Yu K.W., Hahn E.J., Peak K.Y., Murthy H.N. (2005b), “High density cultivation of Panax ginseng cells in balloon type bioreactors: role of oxygen supply on biomass and ginsenoside production”, Genetics and Applications 2, pp. 7-13. 160. Thengane S.R., Kulkarni D.K., Shrikhande V.A., Joshi S.P., Sonawane K.B., Krishnamurthy K.V. (2003), “Influence of medium composition on callus induction and camptothecin(s) accumulation in Nothapodytes foetida”, Plant Cell, Tissue and Organ Culture 72, pp. 247-251. 161. Trejo-Tapia G., Arias-Castro C., Rodríguez-Mendiola M. (2003), “Influence of the culture medium constituents and inoculum size on the accumulation of blue pigment and cell growth of Lavandula spica”. Plant Cell Tiss Org Cult 72, pp. 7-12. 162. Vanisree M., Lee C.Y., Shu-Fung L., Nalawade S.M.L., Yih C., Tsay H.S. (2004), “Studies on the production of some important secondary metabolites from medicinal plants by plant tissue cultures”, Bot Bull Acad Sin 45, pp.1-22. 163. Vanisree M., Tsay H.S. (2004), “Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites”, Int J Appl Sci Eng 2, pp. 29-48. 164. Vasil I.K. (2008), “A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops”, Plant Cell Rep 27, pp. 1423-1440. 165. Verpoorte R., Contin A., Memelink J. (2002), “Biotechnology for the production of plant secondary metabolites”, Phytochem Rev 1, pp.13-25. 166. Véronique J., Genestier S., Courduroux J. C. (1992), “Bioreactor studies on the effect of dissolved oxygen concentration on growth and differentiaton of carrot (Daucus carota L.) cell culture”, Plant Cell report 11(12), pp. 605-608. 102 167. Vijaya S.N., Udayasri P.V.V., Aswani K.Y., Ravi B.B., Phani K.Y., Vijay V.M. (2010), “Advancements in the production of secondary metabolites”, Natural Products 3, pp. 112-123. 168. Villarreal M.L., Arias C., Feria-Velasco A., Ramirez O.T., Quintero R. (1997), “Cell suspension culture of Solanum chrysotrichum (Schldl)- A plant producing an antifungal spirostanol saponin”, Plant Cell Tissue and Organ Culture, 50, pp. 39-44. 169. Wang G.L., Luo H.M., Fang H.J., Jiang D., Huang H.G. (2004), “Fractionation of polysaccharide from Curcuma zedoaria Rosc. and its bioactivities”, Ying Yang Hsueh Pao 26(5), pp. 366-369. 170. Wang G.L., Luo H.M., Fang H.J., Jiang D., Huang H.G. (2004), “Fractionation of polysaccharide from Curcuma zedoaria Rosc and its bioactivities”, Ying Yang Hsueh Pao 26(5), pp. 366-369. 171. Wang G.R., Qi N.M., Wang Z.M. (2010), “Application of a stir-tank bioreactor for perfusion culture and continuous harvest of Glycyrrhiza inflata suspension cells”, African Journal of Biotechnology 9 (3), pp. 347-351. 172. Wang S.J., Zhong J.J. (1996), “A novel centrifugal impeller bioreactor. I. Fluid circulation, mixing, and liquid velocity profiles”, Biotechnol Bioeng 51, pp. 511-519. 173. Wang W., Zhong J.J. (2002), “Manipulation of ginsenoside heterogeneity in cell cultures of Panax notoginseng by addition of jasmonates”, Biosci Bioeng 93, pp. 48-53. 174. Wang X., Morris-Natschke S.L., Lee K.H. (2007), “New developments in the chemistry and biology of the bioactive constituents of Tanshen”, Med Res Rev 27, pp. 133-148. 103 175. Watanabe K., Shibata M., Yano S., Cai Y. Shibuya H., Kitagawa I. (1986), “Antiulcer activity of extracts and isolated compound from zedoary (Gajustsu) cultivated in Yakushima (Japan)”, Yakugaku Zasshi 106(12), pp. 1137-1142. 176. Wilson B., Abraham G., Manju V.S., Mathew M., Vimala B., Sundaresan S., Nambisan B. (2005), “Antibacterial activity of Curcuma zedoaria and Curcuma malabarica tubers”, Ethnopharmacol 99, pp. 147-151. 177. Wink M. (1999), Biochemistry of plant secondary metabolism. Annual plant reviews, vol 2, Sheffield Academic Press. 178. Woerdenbag H.J., Van U.W., Frijlink H.W., Lerk C.F., Pras N., Malingre T.M. (1990), “Increased podophyllotoxin production in Podophyllum hexandrum cell suspension cultures after feeding coniferyl alcohol as β- cyclo dextrin complex”, Plant Cell Rep 9, pp. 97-100. 179. Xingyi (1999), "The chemical constituents of the essential oil from Curcuma zedoaria (Christm) Rosc”, Guang Zhiwu 19 (1), pp. 95-96. 180. Yasuda S., Satosh K., Ishi T., Furuya T. (1972), Studies on the cultural conditions of plant cell suspension culture. Fermentation technology today, Society for fermentation Technology, Osaka, Japan, pp. 697-703. 181. Yesil-Celiktas O., Gurel A., Vardar-Sukan F. (2010), Large scale cultivation of plant cell and tissue culture in bioreactors, Transworld Research Network, Kerala, India. 182. Yoshioka T., Fujii E., Endo M., Wada K., Tokunaga Y., Shiba N., Hohsho H., Shibuya H., Muraki T. (1998), “Antiinflammatory potency of dehydrocurdione, a zedoary-derived sesquiterpene”, Inflamm Res 47(12), pp. 476-481. 104 183. Zenk M.H. (1978), “The impact of plant cell culture on industry”, in Frontiers of Plant Tissue Culture 1978 (Thorpe, T. A., ed.), Intl. Assoc. Plant Tissue Culture, Univ. of Calgary Printing Services, pp. 1-13. 184. Zenk M.H., EI-Shagi H., Schulte U. (1975), “Anthraquinone production by cell suspension cultures of Morinda citrifolia”, Planta Med Suppl, pp. 79-101. 185. Zhang Q., Rich J.O., Cotterill I.C., Pantaleone D.P., Michels P.C. (2005), “14- Hydroxylation of opiates: Catalytic direct autoxidation of codeinone to 14- hydroxycodeinone”, Am Chem Soc 127, pp. 7286-7287. 186. Zhang Z.Y., Zhong J.J. (2004), “Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponins and polysaccharide by high- density cultivation of Panax notoginseng cells”, Biotechnol Prog 20, pp.1076-1081. 187. Zhang Z.Y., Zhong J.J. (2004), “Scale-up of centrifugal impeller bioreactor for hyperproduction of ginseng saponins and polysaccharide by high- density cultivation of Panax notoginseng cells”, Biotechnol Prog 20, pp.1076-1081. 188. Zhao J., Verpoorte (2007), “Manipulating indole alkaloid production by Catharanthus roseus crll culture in bioreactors: from biochemical processing to metabolic engineering”, Phytochem Rev 6, pp. 435-457. 189. Zhao D., Xing J., Li M., Lu D., Zhao Q. (2001), “Optimization of growth and jaceosidin production in callus and cell suspension cultures of Saussurea medusa”, Plant Cell Tissue and Organ Culture 67, pp. 227-234. 190. Zhao J., Zhu W., Hu Q. (2001b), “Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors”, Enzyme Microb Technol 28, pp. 673-681. 105 191. Zhong J.J., Yoshida T. (1995), “High-density cultivation of Perilla frutescens cell suspensions for anthocyanin production: Effects of sucrose concentration and inoculum size”, Enzyme and Microbial Technology 17, pp. 1073-1079. 192. Zhu L. (1993), Aromatic plants and essential constituents, Hai Feng Publishing Co., Hong Kong. 193. Ziv M. (2000), “Bioreactor technology for plant micropropagation”, Horticultural Reviews, 24, pp. 14-23. PHỤ LỤC Phụ lục 1: Môi trƣờng cơ bản MS (Murashige và Skoog, 1962) Muối khoáng Nồng độ (mg/l) Potasium nitrate (KNO3) 1900 Amonium nitrate (NH4NO3) 1650 Calcium chloride (CaCl2.H2O) 440 Magnesium sulfate (MgSO4.7H2O) 370 Potassium phosphate (KH2PO4) 170 Na2EDTA.2H2O 37,2 Manganese sulfate (MnSO4.4H2O) 22,3 Ferrous sulfate (FeSO4.7H2O) 27,8 Zinc Sulfate (ZnSO4.7H2O) 8,6 Boric Acid (H3BO3) 6,2 Potassium Iodine (KI) 0.83 Sodium molybdate (Na2MoO4.2H2O) 0,25 Colbalt chloride (CoCl2.6H2O) 0,025 Cupric Sulfate (CuSO4.5H2O) 0,025 Vitamin Nồng độ (mg/l) Myo-inositol 100 Nicotinic acid 0,5 Pyridoxine HCl 0,5 Thiamine HCl 0,1 Glycine 2 Sucrose 30 g/l Agar 8 g/l Phụ lục 2: Hình ản h thí nghiệm Hình: Nuôi cấy tế bào nghệ đen trong bình tam giác 250 ml, trên máy lắc Hình: Tế bào nghệ đen để lắng trong bình tam giác 250 ml Hình: Sinh khối tươi của tế bào nghệ đen thu được sau kh nuôi cấy 14 ngày trong hệ lên men 10 L
File đính kèm:
- luan_an_nghien_cuu_nuoi_cay_te_bao_cay_nghe_den_curcuma_zedo.pdf
- Bìa luận án.pdf
- Bìa tóm tắt luận án (Tiếng Anh).pdf
- Bìa tóm tắt luận án (Tiếng Việt).pdf
- KLuan moi.pdf
- Toán văn tóm tắt luận án (Tiếng Anh).pdf
- Toán văn tóm tắt luận án (Tiếng Việt).pdf
- Trang thông tin những đóng góp mới luận án -Tiếng Anh-.pdf