Luận án Nghiên cứu tuổi thọ và độ tin cậy của vít me – Đai ốc bi máy CNC trong điều kiện môi trường Việt Nam
Cơ khí là ngành công nghiệp nền tảng, sản phẩm của cơ khí được ứng dụng rộng rãi
trong hầu hết các các ngành kinh tế xã hội. Từ công nghiệp vũ trụ, công nghiệp khai thác
tài nguyên thiên nhiên, công nghiệp hóa học, đến cả công nghiệp du lịch, đặc biệt là công
nghệ thông tin cũng đều phải sử dụng các sản phẩm, thiết bị, cơ cấu, máy móc cơ khí với
từng mức độ khác nhau.
Mới đây, ngày 11 tháng 4 năm 2014, phát biểu tại Hội nghị tổng kết 10 năm thực hiện
chiến lược phát triển ngành Cơ khí. Thủ Tướng chính phủ nhấn mạnh: “Cơ khí là ngành
công nghiệp nền tảng, có vị trí quan trọng trong tiến trình công nghiệp hóa, hiện đại hóa
đất nước. Chính phủ rất quan tâm tới phát triển ngành Cơ khí, đặc biệt là Cơ khí chế tạo”.
Trong lĩnh vực chế tạo và gia công cơ khí chính xác, máy công cụ CNC là lựa chọn ưu
tiên hàng đầu hiện nay. Không chỉ có ưu thế về độ chính xác do máy CNC được trang bị hệ
thống đo kiểm, phản hồi và điều chỉnh tác động ngay trong quá trình gia công sản phẩm,
mà gia công CNC còn đem lại hiệu quả kinh tế rõ rệt do giảm thiểu thời gian gia công nhờ
tự động hóa cao các chuyển động phụ (cấp phôi, thay dao, bù dao,.), hoặc thực hiện đồng
thời nhiều nguyên công khác nhau.
Tóm tắt nội dung tài liệu: Luận án Nghiên cứu tuổi thọ và độ tin cậy của vít me – Đai ốc bi máy CNC trong điều kiện môi trường Việt Nam
I LỜI CAM ĐOAN Tôi xin cam đoan đây tất cả những nội dung trong luận án “Nghiên cứu tuổi thọ và độ tin cậy của vít me – đai ốc bi máy CNC trong điều kiện môi trường Việt Nam” là công trình nghiên cứu của riêng tôi, thực hiện dưới sự hướng dẫn của tập thể cán bộ hướng dẫn: PGS.TS Phạm Văn Hùng và PGS.TS Nguyễn Doãn Ý. Các số liệu, kết quả trong luận án là trung thực, trích dẫn đầy đủ và chưa từng được ai công bố trong bất kỳ công trình nào khác. Hà Nội, ngày tháng năm 2015 Tập thể hƣớng dẫn Tác giả luận án PGS.TS. Phạm Văn Hùng PGS.TS. Nguyễn Doãn Ý Trần Đức Toàn II LỜI CẢM ƠN Trong quá trình học tập, nghiên cứu và hoàn thành luận án, tôi đã nhận được rất nhiều sự giúp đỡ, góp ý, động viên và chia sẻ của mọi người. Lời đầu tiên, tôi xin chân thành cảm ơn Ban Giám hiệu, Viện Đào tạo sau Đại học, Viện Cơ khí, Bộ môn Máy và ma sát học – Trường Đại học Bách Khoa Hà Nội đã cho phép, hướng dẫn và tạo điều kiện thuận lợi cho tôi được học tập và nghiên cứu khoa học. Tôi đặc biệt trân trọng và biết ơn PGS.TS Phạm Văn Hùng, PGS.TS Nguyễn Doãn Ý đã hướng dẫn, chỉ bảo cho tôi những ý kiến vô cùng bổ ích và tạo mọi điều kiện thuận lợi cho tôi về mặt chuyên môn trong suốt quá trình học tập và thực hiện luận án. Tôi xin chân thành cảm ơn các thầy cô trong bộ môn Máy và ma sát học – Đại học Bách Khoa Hà Nội đã đóng góp cho tôi những ý kiến quý báu cũng như tạo điều kiện thuận lợi cho tôi trong suốt thời gian hoàn thành luận án. Tôi xin chân thành cảm ơn Ban Giám hiệu, Lãnh đạo khoa cùng toàn bộ giảng viên khoa Công nghệ Cơ khí – Trường Đại học Điện lực đã nhiệt tình giúp đỡ, hỗ trợ, tạo điều kiện thuận lợi cho tôi được đi học và hoàn thành nhiệm vụ học tập của mình. Cuối cùng, tôi xin gửi lời cảm ơn chân thành tới gia đình, bạn bè, những người đã chia sẻ, động viên, giúp đỡ tôi, là nguồn động lực to lớn giúp tôi học tập, nghiên cứu và hoàn thành luận án này. Hà Nội, ngày tháng năm 2015 Tác giả luận án Trần Đức Toàn III MỤC LỤC MỤC LỤC ..................................................................................................................... III DANH MỤC CÁC TỪ VIẾT TẮT ............................................................................... V DANH MỤC CÁC KÝ HIỆU CHÍNH ........................................................................ VI DANH MỤC CÁC BẢNG ......................................................................................... VIII DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ ....................................................................... X MỞ ĐẦU .......................................................................................................................... 1 CHƢƠNG 1: TỔNG QUAN VỀ VÍT ME – ĐAI ỐC BI ................................................. 5 1.1. Đặc điểm, vai trò của vít me – đai ốc bi ................................................................. 5 1.2. Phân loại vít me – đai ốc bi ..................................................................................... 8 1.2.1. Theo hình dáng và kết cấu.................................................................................. 8 1.2.2. Theo cấp chính xác ........................................................................................... 13 1.2.3. Theo công dụng ................................................................................................ 18 1.3. Các dạng hỏng vít me – đai ốc bi .......................................................................... 18 1.4. Các đặc trƣng, tính toán cơ bản của vít me – đai ốc bi ...................................... 20 1.4.1. Độ cứng chống biến dạng đàn hồi [38] ............................................................ 21 1.4.2. Tải tĩnh dọc trục danh nghĩa Coa [39] ............................................................... 21 1.4.3. Tải động dọc trục danh nghĩa Ca [39] ............................................................... 21 1.4.4. Tải dọc trục sửa đổi [39] .................................................................................. 22 1.4.5. Tuổi thọ vít me – đai ốc bi [39] ........................................................................ 22 1.5. Vật liệu làm vit me – đai ốc bi............................................................................... 23 1.6. Môi trƣờng làm việc của máy công cụ CNC ....................................................... 24 1.6.1. Môi trường làm việc của máy CNC trên thế giới ............................................. 24 1.6.2. Môi trường làm việc máy CNC tại Việt Nam .................................................. 25 1.7. Tổng quan các nghiên cứu vít me – đai ốc bi ...................................................... 28 1.7.1. Một số nghiên cứu về vít me – đai ốc bi trên thế giới: ..................................... 28 1.7.2. Một số nghiên cứu tại Việt Nam ...................................................................... 36 KẾT LUẬN CHƢƠNG 1 ............................................................................................. 37 CHƢƠNG 2: LÝ THUYẾT TUỔI THỌ VÀ ĐỘ TIN CẬY VÍT ME – ĐAI ỐC BI TRÊN CƠ SỞ MÒN .......................................................................................................... 38 2.1. Tổng quan về mòn vật liệu: ................................................................................... 38 2.1.1. Mòn theo thời gian ........................................................................................... 38 2.1.2. Ảnh hưởng các yếu tố cơ bản đến mòn ............................................................ 39 IV 2.1.3. Tiêu chuẩn quốc gia TCVN 7699-2-30 về thử nghiệm môi trường ................. 43 2.2. Tuổi thọ vít me – đai ốc bi ..................................................................................... 46 2.2.1. Tuổi thọ vít me – đai ốc bi theo lý thuyết ........................................................ 46 2.2.2. Tuổi thọ vít me – đai ốc bi trên cơ sở mòn ...................................................... 48 2.3. Lý thuyết độ tin cậy [6, 7, 11, 12] ......................................................................... 53 2.3.1. Đặc trưng độ tin cậy ......................................................................................... 54 2.3.2. Các chỉ tiêu xác định độ tin cậy ....................................................................... 54 2.3.3. Hàm phân phối sử dụng trong tính toán độ tin cậy: ......................................... 56 2.3.4. Xác định độ tin cậy trên cơ sở mòn [7] ............................................................ 57 2.4. Tuổi thọ và độ tin cậy của VMĐB ...................................................................... 59 KẾT LUẬN CHƢƠNG 2 ............................................................................................. 61 CHƢƠNG 3: PHƢƠNG PHÁP, HỆ THỐNG THIẾT BỊ THỰC NGHIỆM NGHIÊN CỨU MÒN ......................................................................................................................... 62 3.1. Mục đích và yêu cầu thực nghiệm: ....................................................................... 62 3.2. Thiết kế máy thí nghiệm ........................................................................................ 62 3.2.1. Đối tượng nghiên cứu của thí nghiệm .............................................................. 62 3.2.2. Thiết kế máy thí nghiệm................................................................................... 62 3.3. Tổ hợp máy thí nghiệm ......................................................................................... 74 3.4. Quy hoạch và tổ chức thực nghiệm ...................................................................... 77 3.4.1. Xác định các thông số thực nghiệm ................................................................. 77 3.4.2. Các thông số cơ bản của thực nghiệm .............................................................. 80 3.4.3. Tổ chức thực nghiệm và đo mòn ...................................................................... 81 KẾT LUẬN CHƢƠNG 3 ............................................................................................. 83 CHƢƠNG 4: KẾT QUẢ THỰC NGHIỆM VÀ ĐÁNH GIÁ ........................................ 84 4.1. Kết quả thực nghiệm, xây dựng hàm hồi quy ..................................................... 84 4.1.1. Thực nghiệm tạo mòn ...................................................................................... 84 4.1.2. Xây dựng hàm hồi quy ..................................................................................... 92 4.2. Tuổi thọ, độ tin cậy của VMĐB khi làm việc trong môi trƣờng Việt Nam. ... 103 KẾT LUẬN CHƢƠNG 4 ........................................................................................... 106 KẾT LUẬN CỦA LUẬN ÁN .......................................................................................... 107 KHUYẾN NGHỊ .............................................................................................................. 107 TÀI LIỆU THAM KHẢO ............................................................................................... 109 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN ......................... 114 V DANH MỤC CÁC TỪ VIẾT TẮT ISO: International Organization for Standardization – Tổ chức tiêu chuẩn thế giới RE: Rotary Encoder – thước quang đo quay LS: Liner Scale – thước quang đo thẳng VMĐB: Ball screw – “Vít me – đai ốc bi” vg/ph: Vòng/phút QHTN: Quy hoạch thực nghiệm VI DANH MỤC CÁC KÝ HIỆU CHÍNH Ký hiệu Ý nghĩa Đơn vị Góc tiếp xúc của bi Độ ( 0 ) Góc rãnh dẫn hướng bi Độ ( 0 ) l Sai lệch dọc trục do biến dạng đàn hồi m Ph Bước vít me danh nghĩa mm DW Đường kính bi trong bộ truyền vít me – đai ốc bi mm Dpw Đường kính đường tròn tạo bởi tâm các bi trong bộ truyền vít me – đai ốc bi mm d1 Đường kính danh nghĩa trục vít me mm d2 Đường kính chân răng trục vít me mm D1 Đường kính bích đai ốc mm D2 Đường kính chân răng đai ốc bi mm D3 Đường kính đỉnh răng đai ốc bi mm L Tuổi thọ (theo ISO) Vòng Lh Tuổi thọ (theo ISO) Giờ Lr Tuổi thọ khi vít me – đai ốc bi làm việc hai chiều (theo ISO) Vòng Lhr Tuổi thọ khi vít me – đai ốc bi làm việc hai chiều (theo ISO) Giờ Lar Tuổi thọ theo hệ số độ tin cậy (theo ISO) Vòng Lhar Tuổi thọ theo hệ số độ tin cậy (theo ISO) Giờ n Tốc độ quay của trục vít me Vòng/phút nm Tốc độ tương đương của trục vít me – đai ốc bi Vòng/phút F Tải dọc trục N Fm Tải dọc trục tương đương khi bộ truyền vít me – đai ốc bi làm việc một chiều N Fma Tải dọc trục tương đương khi bộ truyền vít me – đai ốc bi làm việc hai chiều N p Áp suất pháp tuyến tại điểm tiếp xúc N/m2 v Vận tốc trượt tương đối của cặp ma sát (m/phút) VII Ca Tải động dọc trục danh nghĩa N Coa Tải tĩnh dọc trục danh nghĩa N (t) Tốc độ mòn theo thời gian m/giờ b Tốc độ mòn VMĐB khi làm việc trong môi trường TCVN 7699-2-30 và có bôi trơn m/giờ k Tốc độ mòn VMĐB khi làm việc trong môi trường TCVN 7699-2-30 và không bôi trơn m/giờ m Hệ số tuổi thọ bổ sung khi vít me – đai ốc bi làm việc trong môi trường TCVN 7699-2-30 và có bôi trơn Hệ số tuổi thọ bổ sung khi vít me – đai ốc bi làm việc trong môi trường TCVN 7699-2-30 và không bôi trơn C Sai số tích lũy vị trí đai ốc m ep Chấp nhận sai số trong hành trình quy định m V300p Độ rộng miền phân bố giá trị vị trí khi đai ốc dịch chuyển trên đoạn 300 mm bất kỳ m Vup Độ rộng miền phân bố giá trị vị trí đai ốc khi trục vít me quay 1 vòng ở trên đoạn bất kỳ m Uc Lượng mòn dọc trục m [U] Lượng mòn dọc trục giới hạn m Sai lệch vị trí dọc trục của đai ốc m [ ] Sai lệch vị trí dọc trục giới hạn m Tuổi thọ VMĐB khi làm việc trong môi trường TCVN 7699-2- 30 và không bôi trơn Giờ Tuổi thọ VMĐB khi làm việc trong môi trường TCVN 7699-2- 30 và có bôi trơn Giờ Hệ số tuổi thọ giữa bôi trơn và không bôi trơn VIII DANH MỤC CÁC BẢNG Số bảng Nội dung Trang Bảng 1.1 ep cho phép với bộ truyền cần độ chính xác định vị cao 14 Bảng 1.2 ep cho phép với bộ truyền không yêu cầu độ chính xác định vị cao 15 Bảng 1.3 Vup cho phép theo cấp chính xác 15 Bảng 1.4 V300p cho phép theo cấp chính xác 16 Bảng 1.5 V2 p cho phép theo cấp chính xác 16 Bảng 1.6 Cấp chính xác cần thiết cho các trục máy của NSK 16 Bảng 1.7 Cấp chính xác cần thiết cho các trục máy của HIWIN 17 Bảng 1.8 Hệ số phụ thuộc độ chính xác 22 Bảng 1.9 Hệ số phụ thuộc xử lý khí khi nhiệt luyện thép 22 Bảng 1.10 Vật liệu và phương pháp nâng cao chất lượng bề mặt 23 Bảng 1.11 Tiếp xúc giữa hai vật rắn có biến dạng đàn hồi 29 Bảng 1.12 Hệ số ma sát trong vít me – đai ốc bi theo mô phỏng và ước tính, so sánh 30 Bảng 2.1 Hệ số độ tin cậy 48 Bảng 2.2 Mô tả sai lệch vị trí đai ốc do biến dạng đàn hồi 51 Bảng 2.3 Các chỉ tiêu độ tin cậy lý thuyết và thực nghiệm 56 Bảng 2.4 Hệ số tuổi thọ thực nghiệm 60 Bảng 2.5 Hệ số tuổi thọ khi làm việc ở môi trường TCVN 7699-2-30 ứng với các độ tin cậy 60 Bảng 3.1 Thông số kỹ thuật vít me – đai ốc bi 63 Bảng 3.2 Các biến của ma trận thí nghiệm 79 Bảng 4.1 Bảng tổng hợp lượng mòn dọc trục đo được trong các thí nghiệm 92 Bảng 4.2 Bảng tính các thông số Lh iso; ; Lh tn; m tại mỗi điểm đo (điểm đích) của các thí nghiệm 93 Bảng 4.3 Bảng ma trận biến thí nghiệm 96 Bảng 4.4 Các giá trị hệ số tuổi thọ theo môi trường tại tâm quy hoạch 96 IX Bảng 4.5 Các giá trị hàm hồi quy thực nghiệm 97 Bảng 4.6 Bảng số liệu thí nghiệm mòn với hàm hồi quy tốc độ mòn 100 Bảng 4.7 Giá trị các biến vào, ra của hàm hồi quy mới 100 Bảng 4.8 Bảng kê các biến đã chuẩn hóa 101 Bảng 4.9 Các giá trị yi; ̅; ̂ của hàm hồi quy 102 Bảng 4.10 Các giá trị xác định độ lệch chuẩn của mk 104 Bảng 4.11 Khoảng giá trị mk ứng với các độ tin cậy thực tế 105 Bảng 4.12 Khoảng giá trị m ứng với các độ tin cậy thực tế 105 X DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Tên hình Nội dung Trang Hình 1.1 Hình ảnh về cấu tạo một số bộ truyền vít me – đai ốc 5 Hình 1.2 Hình ảnh một số bộ truyền vít me – đai ốc bi 5 Hình 1.3 Hình ảnh vị trí vít me – đai ốc bi trong máy CNC 6 Hình 1.4 Vị trí vít me – đai ốc bi trong bàn dao 7 Hình 1.5 Vít me – đai ốc bi loại có ren trái và loại có ren phải 8 Hình 1.6 Vít me – đai ốc bi loại có ren một đầu mối 8 Hình 1.7 Vít me – đai ốc bi loại có ren nhiều đầu mối 9 Hình 1.8 Đai ốc cho ren nhiều đầu mối 9 Hình 1.9 Vít me – đai ốc bi loại có rãnh hồi bi theo lỗ trên đai ốc 10 Hình 1.10 Vít me – đai ốc bi loại có rãnh hồi bi kiểu ống 10 Hình 1.11 Vít me – đai ốc bi loại có rãnh hồi bi giữa hai vòng ren kế tiếp 10 Hình 1.12 Vít me – đai ốc bi loại có kết cấu khử khe hở nhờ tấm đệm 11 Hình 1.13 Loại có hai rãnh bi, khoảng cách tăng (giảm) so với bước vít khoảng 11 Hình 1.14 Khử khe hở bằng tăng kích thước bi 12 Hình 1.15 ... r [39]. Mức tin cậy của thực nghiệm là 95% (tiêu chuẩn Fisher): Độ tin cậy thực tế m là 86% tương ứng với mức tin cậy 90% của ISO; Độ tin cậy thực tế m là 94% tương ứng với mức tin cậy 99% của ISO. - Tốc độ mòn VMĐB khi làm việc trong môi trường TCVN 7699-2-30, khi không bổ sung bôi trơn tính theo (4.6), khi có bổ sung bôi trơn tính theo (4.7). Trong đó, hệ số tuổi thọ giữa có bổ sung bôi trơn và không bổ sung bôi trơn = = 1,68. - Với mức tin cậy từ 86% đến 94%, khi không bổ sung bôi trơn, hệ số tuổi thọ theo môi trường của VMĐB “mk” tương ứng từ 1,00.( ̂ ) đến 0,21.( ̂ ); Khi có bổ sung bôi trơn, hệ số tuổi thọ theo môi trường của VMĐB “m” tương ứng 1,00.( ̂ ) đến 0,21.( ̂ ). - So với VMĐB làm việc trong môi trường và bôi trơn theo quy định của ISO, VMĐB làm việc trong môi trường TCVN 7699-2-30: Khi có bổ sung bôi trơn, lượng mòn tăng lên khoảng 1/0,2374 4,21 lần; Khi không bổ sung bôi trơn, lượng mòn tăng lên khoảng 1/0,1413 7,08 lần. Tương ứng là tuổi thọ VMĐB lần lượt giảm đi 4,21 và 7,08 lần. 107 KẾT LUẬN CỦA LUẬN ÁN Luận án đã thực hiện đầy đủ các nội dung nghiên cứu và đạt được mục đích đề ra. Những kết quả đạt được và đóng góp mới của đề tài cụ thể là: - Môi trường nhiệt đới ẩm của Việt Nam đặc trưng bởi TCVN 7699-2-30 có ảnh hưởng rõ rệt tới tuổi thọ và độ tin cậy của VMĐB. Quy hoạch thực nghiệm với ước lượng chu kỳ lấy mẫu 24h là phù hợp. Thiết bị thí nghiệm, hệ thống đo có độ chính xác và độ tin cậy đáp ứng yêu cầu của quy hoạch thực nghiệm đo mòn VMĐB. - Khi VMĐB làm việc trong môi trường TCVN 7699-2-30, công thức tuổi thọ theo ISO cần bổ sung thêm hệ số tuổi thọ môi trường m: “Lh mt= m.Lh iso”. Trong đó hệ số tuổi thọ môi trường khi có bổ sung bôi trơn là “ ̂”, tính theo (4.3). Khi không bổ sung bôi trơn là ̂k, tính theo (4.1). - Công thức tính tuổi thọ của ISO có mức tin cậy 90%, khi yêu cầu mức độ tin cậy cao hơn thì cần bổ sung hệ số độ tin cậy far [39]. Với mức tin cậy của thực nghiệm là 95%: Độ tin cậy thực tế m là 86% tương ứng với mức tin cậy 90% của ISO; Độ tin cậy thực tế m là 94% tương ứng với mức tin cậy 99% của ISO. - Trong môi trường theo TCVN 7699-2-30, tốc độ mòn VMĐB khi không bổ sung bôi trơn tính theo công thức (4.6), khi có bổ sung bôi trơn tính theo công thức (4.7). Trong đó, hệ số tuổi thọ giữa bổ sung bôi trơn và không bổ sung bôi trơn là = 1,68. - Với mức tin cậy từ 86% đến 94%: Khi không bổ sung bôi trơn, hệ số tuổi thọ theo môi trường của VMĐB “mk” thay đổi tương ứng từ 1,00.( ̂ ) đến 0,21.( ̂ ); Khi bổ sung bôi trơn, hệ số tuổi thọ theo môi trường của VMĐB “m” thay đổi tương ứng từ 1,00.( ̂ ) đến 0,21.( ̂ ). - So với VMĐB làm việc trong môi trường theo quy định của ISO, VMĐB làm việc trong môi trường theo TCVN 7699-2-30: Khi có bổ sung bôi trơn, lượng mòn tăng lên khoảng 4,21 lần; Khi không bổ sung bôi trơn, lượng mòn tăng lên khoảng 7,08 lần. Tương ứng là tuổi thọ VMĐB lần lượt giảm đi 4,21 và 7,08 lần. KHUYẾN NGHỊ Kết quả nghiên cứu cho thấy môi trường nhiệt ẩm biến đổi với biên độ và tốc độ lớn, (TCVN 7699-2-30 - môi trường đặc trưng của khí hậu Việt Nam, đặc biệt là miền Bắc Việt Nam) có ảnh hưởng lớn đến tuổi thọ và độ tin cậy. Cần phải quan tâm đến ảnh hưởng của môi trường: 108 - Trong trường hợp chung, tuổi thọ và độ tin cậy tính toán theo tiêu chuẩn ISO khi VMĐB làm việc trong môi trường có tác động nhiệt ẩm theo TCVN 7699-2-30 sẽ bị suy giảm rõ rệt. Cần phải điều chỉnh bằng hệ số m để xác định chính xác hơn. - Có kế hoạch vận hành, bảo dưỡng, sửa chữa và thay thế phù hợp với điều kiện sử dụng – điều kiện môi trường nhiệt ẩm. - Lắp đặt và vận hành máy trong điều kiện môi trường sản xuất đảm bảo không trong phạm vi của TCVN 7699-2-30. 109 TÀI LIỆU THAM KHẢO Tiếng Việt [1]. Bùi Quý Lực (2006) Hệ thống điều khiển số trong công nghiệp. Nhà xuất bản Khoa học và kỹ thuật. [2]. Lê Văn Uyển, Vũ Lê Huy (2006) Tính toán ứng suất và tuổi thọ trong truyền đông VMĐB. Tuyển tập các bài báo khoa học Hội nghị khoa học lần thứ 20 – Đại học Bách khoa Hà Nội. [3]. Lê Văn Uyển, Vũ Lê Huy (2007) Phương pháp tính toán, thiết kế và lựa chọn truyền động VMĐB. Tuyển tập công trình hội nghị Cơ học toàn quốc lần thứ VIII. [4]. Lê Văn Uyển, Vũ Lê Huy, Trịnh Đồng Tính (2007) Xây dựng cơ sở tính toán truyền động vít me ma sát lăn và chế tạo thử truyền động vít me ma sát lăn. Đê tài cấp Bộ B2007-01-30. [5]. Nguyễn Anh Tuấn, Phạm Văn Hùng (2005) Ma sát học. Nhà xuất bản Khoa học và kỹ thuật. [6]. Nguyễn Doãn Ý (2004) Độ tin cậy trong thiết kế chế tạo máy và hệ cơ khí. Nhà xuất bản Xây dựng. [7]. Nguyễn Doãn Ý (2008) Giáo trình ma sát, mòn và bôi trơn Tribology. Nhà xuất bản Khoa học và kỹ thuật. [8]. Nguyễn Doãn Ý (2009) Xử lý số liệu thực nghiệm trong kỹ thuật. Nhà xuất bản Khoa học và kỹ thuật. [9]. Nguyễn Đắc Lộc, Ninh Đức Tốn, Lê Văn Tiến, Trần Xuân Việt (1999) Sổ tay Công nghệ chế tạo máy – tập 1,2. Nhà xuất bản Khoa học và kỹ thuật. [10]. Nguyễn Minh Tuyển (2005) Quy hoạch thực nghiệm. Nhà xuất bản Khoa học và kỹ thuật. [11]. Nguyễn Thị Ngọc Huyền (2012) Nghiên cứu tuổi thọ và độ tin cậy của đường dẫn hướng ma sát lăn máy công cụ CNC trên cơ sở mòn trong điều kiện khí hậu Việt Nam. Luận án tiến sĩ kỹ thuật cơ khí. [12]. Nguyễn Trọng Hiệp (2007) Chi tiết máy – Tập 1,2. Nhà xuất bản Giáo dục. [13]. Phạm Đắp, Nguyễn Anh Tuấn (1983) Thiết kế máy công cụ - Tập 1,2. Nhà Xuất bản Khoa học và kỹ thuật. [14]. Phạm Văn Hùng, Nguyễn Phương (2007) Cơ sở máy công cụ. Nhà xuất bản Khoa học và kỹ thuật. 110 [15]. Tạ Duy Liêm (1997) Máy công cụ CNC và Robot Công nghiệp. Nhà xuất bản Đại học Bách Khoa. [16]. TCVN 7011 – 1 (2007) Quy tắc kiểm máy công cụ - Phần 1 – Độ chính xác hình học của máy. [17]. TCVN 7011 – 2 (2007) Quy tắc kiểm máy công cụ - Phần 2 – Xác định độ chính xác và khả năng lặp lại định vị của trục điều khiển số. [18]. TCVN 7699 – 2 – 30 (2007) Thử nghiệm môi trường – Phần 2-30: Các thử nghiệm – Thử nghiệm Db: Nóng ẩm, chu kỳ (chu kỳ 12h+12h). Tiếng Anh [19]. A. Kamalzadeh, K. Erkorkmaz (2007) Compensation of axial vibrations in ball screw drives. Ann, CIRP 56 (1). pp.373 – 378. [20]. A. Verl, S. Frey (2010) Correlation between feed velocity and preloading in ball screw drives. CIRP Annals – Manufacturing Technology. [21]. Adolf Frank, Fritz Ruech Thermal errors in CNC machine tools. Forcus: Ballscrew expansion. [22]. Amin Kamalzadeh, Daniel J.Gordon, Kaan Erkorkmaz (2010) Robust compensation of elastic derformations in ball screw drives. International Journal of Machine Tools & Manufacture. [23]. C. C Wei, J. F. Lin, J.H Horng (2009) Analysis of ball screw with a preload and lubrication. Tribology International 42. pp.1816-1831. [24]. C. L. Chen, M. J. Jang, K.C. Lin (2004) Modeling and high-precision control of a ball-screw-driven stage. Precision Engineering 28. pp.483-495. [25]. C. W. Wei, J. F. Lin (2003) Kinematic ananlysis of the ball screw mechanism considering variable contact angles and elastic deformations. ASME J.Mech.Des. 125 (4) 717-733. [26]. Canudas de Wit, Olsson H, Astrom KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Auto control 40(3) pp. 419-425. [27]. Chin-Chung Wei, Ruei–Syuan Lai (2011) Kinematical analyses and transmission efficiency of a preload ball screw operating at high rotational speeds. Mechanism and Machine Theory 46. pp.880-898. [28]. Chin-Chung Wei, Wei–Lun Liou, Ruei–Syuan Lai (2012) Wear analysis of the offset type preloaded ball-screw operating at high speed. Wear 292-293. pp.111-123. 111 [29]. Cnczone.com [30]. D. Mundo, H.S Yan (2007) Kinematic optimization of ball screw transmission mechanisms. Mechanism and machine theory 42. pp.34-47. [31]. FESTIGKEITSBERECHNUNG. [32]. H. Weule, H. U. Golz (1991) Preload-Control in ball screw – A New Approach for Machine Tool Building. [33]. Hiwin Technologies Company (2000) Ballscrews technical information. [34]. Huang, H.-T.T. and Ravani, B (1995) Contact stress Analysis in Ball Screw mechanism Using he Tubular medial Axis Representation of Contacting Surfaces. Azarm, S. et. al., eds., Advances in Design Automation, Vol.1 Proc. ASME Design Engineering Technical Conferences, Sep. 17-20, Boston, 749-756. [35]. ISO 3408-1-2006(E/F) Ball screw – Part1: Vocabulary and designation. [36]. ISO 3408-2-1991(E) Ball screw – Part2: Nominal diameters and nominal – Metric series. [37]. ISO 3408-3-2006(E) Ball screw – Part3: Acceptance conditions and acceptance tests [38]. ISO 3408-4-2006(E) Ball screw – Part4: Static axial rigidity. [39]. ISO 3408-5-2006(E) Ball screw – Part5: Static and dynami axial load ratings and operational life. [40]. J. F. Cuttino, T. A. Dow, B.F. Knight (1997) Analytical and experimental identification of nonlinerities in a single –nut preloads ball screw. ASME J.Mech. Des. 119 (1) 15-19. [41]. J.K. Lancaster. Areview of the influence of envirionmental humidity and water on friction, lubrication and wear. [42]. J. Neubrand, H. Weiss (1995) Dry rolling wear of different materials induced by a non-uniform hertzian pressure ditribution. Surface and coatings technology 76-77. pp.462-468. [43]. Jerzy Z.Sobolewski. Vibration of the ball screw drive (2012) Engineering Failure Analysis 241-8. [44]. Josef Mayr, Jerzy Jedrzejewsky, Eckart Uhlmanm, M. Alkan Donmez, Wolfgang Knapp, Frank Hartig, Klaus Wendt, Toshimichi Moriwaki, Paulshore, Robert Schmitt, Chirstian Brecher, Timo Wurz, Konrad Wegener (2012). Thermal issues in machine tools. CIRP Annals – Manufacturing Technology. 112 [45]. Jui-Pin Hung, James Shih-Shyn Wu, Jerry Y. Chiu (2004) Impact failure analysis of re-circulating mechanism in ball screw. Engineering Failure Analysis 11. pp.561- 573. [46]. K. Erkorkmaz, A kamalzadeh (2006) Hand bandwidth control of ball screw drives, Ann, CIRP 55 (1). pp.393 – 398. [47]. K.K Varanasi, S.A Nayfey (2004) Dynamics of lead-screw drives: low-order modeling and experiments. ASME J.Dyn. Syst. Meas. Control 126 (2). pp.388 – 396. [48]. Ks-kurim.cz [49]. Levit GA (1963) Recirculating ball screw and nut units. Machines and tooling XXXIV (4). pp.3-8. [50]. Lin, M.C., Ravani, B., and Velinsky, S.A (1994) Kinematics of the ball screw mechanism. Journal of Mechanical Design, Transaction of the ASME, 116/3:849-855 [51]. M. F. Zaeh, T. Oertli, j. Milberg (2004) Finite element modeling of ball screw feed drive systems. Ann. CIRP 53 (1). pp.289 – 292. [52]. Machineryselection.com [53]. Markho PH (1988) Highly accurate formulas for rapid caculation of the key geomatrical parameters of elliptic Hertzian contacts. ASME Journal of Tribology. 109. pp.640-647. [54]. Milwaukeemachining.com [55]. Min-Seok Kim, Sung-Chong Chung (2006) Friction identification of ball-screw driven servomechanisms through the limit cycle analysis. Mechatronics 16. pp. 131- 140. [56]. Mmsonline.com [57]. Mohammad Asaduzzaman Chowdhury, Md. Maksud Helali (2006) The effect of frequency of vibration and humidity on the coefficient of friction. Tribology International 39. pp. 958-962. [58]. Nakashima K, Tamaru Y, Takaguji K (2001) Ultraprecision positioning by preload changes of lead screw. JSME International Journal Series C;44(3). pp.808-815. [59]. Nchmf.gov.vn [60]. NSK Motion and Control ( 2008) Precision Machine Components. [61]. Nskeurope.com [62]. Olaru D, Puiu GC, Balan LC, Puiu V (2006) A New Model to Estimate Friction Torque in a ball Screw System. Product Engineering 3. pp.333-346. [63]. Olympus-controls.com 113 [64]. Pixgood.com [65]. Rbrsi.com [66]. Ro PI, Shim W, Jeong S (2000) Robust friction compensation for submicrom-eter positioning and tracking for a ball screw driven slide system. Prec Eng; 24. pp.160- 73. [67]. Rotomek.com [68]. Spath D, Rosum J, Haberkern a (1995) Kinematics, Frictional Characteristics and Wear Reduction by PVD Coating on Ball Screw Drives. Annals of the CIRP 44/1:349-352. [69]. Steimeyer Catalog Introduction. [70]. TBI Motion Technology Co.,LTD (2012) Ball screw catalog. [71]. Thomson (2014) Precision screw. [72]. U. Heisel, G. Koscák, T. Stehle (2006) Thermography – based investigation into thermarlly inducerd positioning errors of feed drives by example of a ball screw. Ann, CIRP 55 (1) 423 – 426. [73]. Vi.wikipedia.org/wiki [74]. Voer.edu.vn [75]. W.Y.H. Liew (2006) Effect of relative humidity on the unlubricated wear of metals. Wear 260 720-727. [76]. Weiku.com [77]. Xuesong Mei, Maosaomi Tsutsumi, Tao Tao, Nuogang Sun (2003) Study on the Load Distribution of the Ball Screw with Errors, Mechanism and Machine Theory, Volume 38, Issue 11 pp.1257-1269. [78]. Y. Altintas, A.Verl, C.Brecher, L.Uriarte, G.Pritschow (2011) Machine tool feed drives. CRIP Annals – Manufacturing Technology 60. pp. 779-796. [79]. Z.Z. Xu, X.J Liu, H.K. Kim, J.H.Shin, S.K.Lyu (2011) Thermal errors forecast and performance evaluation for an air-cooling ball screw system. International Jounal of Mechine tools and Manufacture. 51. pp.605-611. [80]. Zjhaochen.com 114 DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN 1. Phạm Văn Hùng, Trần Đức Toàn (2011) Nghiên cứu thiết kế thiết bị khảo sát mòn vít me – đai ốc bi máy CNC dưới tác dụng của lực cắt. Kỷ yếu Hội nghị khoa học toàn quốc về cơ khí nhân dịp 55 năm thành lập trường Đại học Bách Khoa Hà Nội. ISBN 978-604- 913-125-7. Trang 596-606. Nhà xuất bản Khoa học tự nhiên và công nghệ. 2. Phạm Văn Hùng, Trần Đức Toàn (2013) Nghiên cứu xây dựng hệ thống đo mòn trong điều kiện nhiệt ẩm của vít me – đai ốc bi. Kỷ yếu Hội nghị khoa học và công nghệ toàn quốc về Cơ khí. ISBN: 978-604-67-0061-6. Trang 488-496. Nhà xuất bản khoa học và kỹ thuật. 3. Tran Duc Toan, Pham Van Hung (2014) Experimental instrument and estimation method of axial wear of ball screw. PROCESSDINGS the 7 th AUN/SEED – Net Regional Conference on Mechanical and Manufacturing Engineering 2014 (RCMME-2014). ISBN 978-604-911-942-2 pp. 181-184. Bach khoa Publishing House. 4. Tran Duc Toan, Pham Van Hung (2014) Effects of temperature and humidity on wear of ball screw. PROCESSDINGS the 7 th AUN/SEED – Net Regional Conference on Mechanical and Manufacturing Engineering 2014 (RCMME-2014). ISBN 978-604-911- 942-2 pp. 176-180. Bach khoa Publishing House. 5. Trần Đức Toàn, Nguyễn Thị Thu Hà, Phạm Văn Hùng (2015) Nghiên cứu đánh giá hệ thống thiết bị thử nghiệm và đo mòn vít me – đai ốc bi trong điều kiện môi trường TCVN 7699-2-30. Tạp chí Cơ khí Việt Nam, số 1 + 2 năm 2015, ISSN 0866 – 7056. Trang 200- 205. 6. Trần Đức Toàn, Phạm Văn Hùng (2015) Nghiên cứu ảnh hưởng của môi trường nhiệt ẩm đến tuổi thọ và độ tin cậy của vít me – đai ốc bi. Tạp chí Cơ khí Việt Nam, số 1+ 2 năm 2015, ISSN 0866 – 7056. Trang 226-232.
File đính kèm:
- luan_an_nghien_cuu_tuoi_tho_va_do_tin_cay_cua_vit_me_dai_oc.pdf