Cơ sở dữ liệu - Thiết kế CSDL quan hệ

Các cách tiếp cận

{ Trên xuống (Top-down), nhắc lại

{ Dưới lên (bottom-up)

1. Biểu diễn dữ liệu người dùng (biểu mẫu, báo cáo)

dưới dạng các quan hệ

2. Chuẩn hoá các quan hệ này

3. Ghép các quan hệ có cùng khoá chính

pdf 25 trang dienloan 19320
Bạn đang xem 20 trang mẫu của tài liệu "Cơ sở dữ liệu - Thiết kế CSDL quan hệ", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Cơ sở dữ liệu - Thiết kế CSDL quan hệ

Cơ sở dữ liệu - Thiết kế CSDL quan hệ
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 1
Thiết kế CSDL quan hệ
Vũ Tuyết Trinh
trinhvt@it-hut.edu.vn
Bộ môn Các hệ thống thông tin, Khoa Công nghệ thông tin
Đại học Bách Khoa Hà Nội
2
Các cách tiếp cận
{ Trên xuống (Top-down), nhắc lại
{ Dưới lên (bottom-up)
1. Biểu diễn dữ liệu người dùng (biểu mẫu, báo cáo) 
dưới dạng các quan hệ
2. Chuẩn hoá các quan hệ này
3. Ghép các quan hệ có cùng khoá chính
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 2
3
Đặt vấn đề
{ Mục đích của chuẩn hoá là gi?
{ Thế nào là chuẩn? Có bao nhiêu chuẩn?
4
Ví dụ
{ 1 CSDL về các hãng cung ứng. 
Suppliers(sid, sname, city, NOE, product,quantity)
100Bolt75TokyoBlakeS3
78Screw124ParisJ&JS2
100Nut100LondonSmithS1
50Screw100LondonSmithS1
quantityProductNOECitySnameSids
¾ Các vấn đề đặt ra
¾ Đề xuất các giải pháp
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 3
5
Mục đích của chuẩn hoá
{ Xác định được 1 tập các lược đồ quan hệ cho
phép tìm kiếm thông tin một cách dễ dàng, 
đồng thời tránh được dư thừa dữ liệu
{ Hướng tiếp cận: 
Tách các lược đồ quan hệ “có vấn đề” thành những
lược đồ quan hệ “chuẩn hơn” 
6
Nội dung
{ Phụ thuộc hàm
{ Phép tách các sơ đồ quan hệ
{ Các dạng chuẩn
{ Phụ thuộc đa trị
{ Kết luận
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 4
7
Phụ thuộc hàm
(Functional dependencies - FD) 
{ Đ/N Phụ thuộc hàm trong 1 quan hệ
Cho
z R(U) là 1 sơ đồ quan hệ, U là tập các thuộc tính. 
z X, Y ⊆ U
X xác định hàm Y hay Y phụ thuộc hàm vào X nếu
z với ∀quan hệ r xác định trên R(U) và với 2 bộ t1 và t2 
bất kỳ mà t1[X] = t2[X] thì t1[Y] = t2[Y].
{ Ký hiệu: X→Y
8
Ví dụ
Supp(sid, sname, city, NOE)
{ sid→sname
{ sid→city
{ sid→NOE
Supply(sid, product,quantity)
{ sid→product
{ sid→quantity
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 5
9
Hệ tiên đề Amstrong
Cho
z R(U) là 1 sơ đồ quan hệ, U là tập các thuộc tính. 
z X,Y,Z,W ⊆ U
(Ký hiệu: XY = X ∪ Y) 
{ Phản xạ (reflexivity) 
Nếu Y ⊆ X thì X→Y. 
{ Tăng trưởng (augmentation) 
Nếu X→Y thì XZ→YZ.
{ Bắc cầu (transitivity)
Nếu X→Y, Y→Z thì X→Z.
10
Hệ quả
{ Luật hợp (union)
Nếu X→Y, X→Z thì X→YZ.
{ Luật tựa bắc cầu (pseudotransitivity)
Nếu X→Y, WY→Z thì XW→Z.
{ Luật tách (decomposition)
Nếu X→Y, Z ⊆ Y thì X→Z.
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 6
11
Bao đóng của 1 tập phụ thuộc hàm
{ Đ/N : Bao đóng của tập phụ thuộc hàm F là tập
lớn nhất các phụ thuộc hàm có thể được suy
diễn logic từ F
z Ký hiệu là F+
{ Suy diễn logic
X → Y được suy diễn logic từ F nếu với mỗi quan hệ
r xác định trên R(U) thoả các phụ thuộc hàm trong F 
thì cũng thoả X → Y
{ F là họ đầy đủ (full family) nếu
F = F+
12
Khoá
{ Đ/N: Cho lược đồ quan hệ R(U), tập các phụ
thuộc hàm F. K ⊆ U, K được gọi là khóa tối thiểu
của R nếu như
z KÆU ∈ F+
z với ∀ K’ ⊂ K thì K’ÆU ∉ F+
{ Nhận xét: Nếu K là một khóa tổi thiểu thì
z K+ = U 
z K là tập thuộc tính nhỏ nhất có tính chất như vậy.
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 7
13
Bao đóng của 1 tập các thuộc tính
{ Đ/N Bao đóng của tập thuộc tính X là tập tất cả
các thuộc tính được xác định hàm bởi X thông
qua tập F
z ký hiệu là X+
X+ = {A ∈ U| X → A ∈F+}
14
Nhận xét
{ Hệ tiên đề Amstrong là đúng đắn và đầy đủ
{ X→Y được suy diễn từ hệ tiên đề Amstrong
⇔ Y ⊆ X+
{ Thiết kế CSDL ? Các khái niệm
z Phụ thuộc hàm
z Bao đóng của tập phụ thuộc hàm
z Khoá
z Bao đóng của 1 tập các thuộc tính
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 8
15
Tính bao đóng của 1 tập thuộc tính
{ Vào: Tập hữu hạn các thuộc tính U
tập các phụ thuộc hàm F trên U
X ⊆ U
{ Ra: X+
{ Thuật toán
B0 X0 = X.
Bi Tính Xi từ Xi-1
Nếu ∃ Y→Z ∈ F ^ Y ⊆ Xi-1 ^ A ∈ Z ^ A ∉ Xi-1
thì Xi = Xi-1 ∪ A 
ngược lại, Xi = Xi-1 .
Nếu Xi ≠ Xi-1
thì thực hiện Bi
ngược lai, thực hiện Bn
Bn X+ = Xi
16
Tìm khoá tối thiểu
{ Vào: U = {A1, A2, , An} , F
{ Ra: khóa tối thiểu K xác định được trên U và F
{ Thuật toán
B0 K0= U
Bi Nếu (Ki-1\{Ai})ÆU 
thì Ki= Ki-1\ {Ai}
ngược lại, Ki= Ki-1
Nếu Ki≠ Ki-1
thì thực hiện Bi
ngược lai, thực hiện Bn
Bn K = Ki
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 9
17
Ví dụ
{ Cho R(U) trong đó U = {A,B,C,D,E,F,G}. F = {AÆB, 
ACDÆE, EFÆG}
1. Tìm một khóa tối thiểu của R
K0 = ABCDEFG
K1 = K0 do nếu loại A thì BCDEFG Æ U không thuộc F+
K2 = K1 \{B} = ACDEFG do ACDEFG Æ U thuộc F+
K3 = K2 do nếu loại C thì ADEFG Æ U không thuộc F+
K4 = K3 do nếu loại D thì ACEFG Æ U không thuộc F+
K5 = K4 \{E} = ACDFG do ACDFG Æ U thuộc F+
K6 = K5 do nếu loại F thì ACDG Æ U không thuộc F+
K7 = K6 \{G} = ACDF do ACDF Æ U thuộc F+
Vậy khóa tối thiểu cần tìm là ACDF
18
Nhận xét về phụ thuộc hàm
{ từ một tập các phụ thuộc hàm có thể suy diễn
ra các phụ thuộc hàm khác
{ trong một tập phụ thuộc hàm cho sẵn có thể có
các phụ thuộc hàm bị coi là dư thừa. 
¾ Làm thế nào để có được một tập phụ thuộc
hàm tốt?
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 10
19
Tập phụ thuộc hàm tương đương
{ Đ/N: Tập phụ thuộc hàm F là phủ của tập phụ thuộc
hàm G hay G là phủ của F hay F và G tương đương
nếu F+ = G+.
z Ký hiệu là F ≈ G
{ Kiểm tra tính tương đương của 2 tập phụ thuộc hàm
B.1. Với mỗi Y→Z ∈ F, Z ⊆ Y+ (trên G) thì Y→Z ∈ G+
Nếu với ∀f ∈ F, f ∈ G+ thì F+ ⊆ G+
B.2. Tương tự, nếu ∀ f ∈ G, f ∈ F+ thì G+ ⊆ F+
B.3. Nếu F+ ⊆ G+ và G+ ⊆ F+ thì F ≈ G
20
Tập phụ thuộc hàm không dư thừa
{ Đ/N: Tập phụ thuộc hàm F là không dư thừa nếu !∃
XÆY∈ F sao cho F \ {XÆY} ≈ F. 
{ Tìm phủ không dư thừa của 1 tập phụ thuộc hàm
z Vào: Tập thuộc tính U, F = {Li ÆRi: i = 1..n}
z Ra : Phủ không dư thừa F’ của F
z Thuật toán
B0 F0= F
Bi Nếu Fi-1\ {LiÆRi} ≈ Fi-1 
thì Fi = Fi-1 \ {LiÆRi}
ngược lại, Fi = Fi-1
Nếu Fi≠ Fi-1
thì thực hiện Bi
ngược lại, thực hiện Bn
Bn F’ = Fi
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 11
21
Phủ tối thiểu của 1 tập phụ thuộc hàm
{ Đ/N: Fc được gọi là phủ tối thiểu của 1 tập phụ
thuộc hàm F nếu thỏa mãn 3 điều kiện sau:
Đk1: Với ∀ f ∈ Fc, f có dạng X Æ A, 
trong đó A là 1 thuộc tính
Đk2: Với ∀ f = XÆY ∈ Fc, !∃ A∈X (A là 1 thuộc tính): 
(Fc \ f) U {(X \ A)ÆY} ≈Fc
Đk3: !∃ XÆA ∈ Fc : Fc \ {XÆA} ≈ Fc
22
Tính phủ tối thiểu
{ Vào: Tập thuộc tính U, F = {LiÆRi: i = 1..n}
{ Ra: phủ tối thiểu Fc của tập phụ thuộc hàm F
{ Thuật toán
B.1. Biến đổi F về dạng F1={Li Æ Aj} 
trong đó Aj là 1 thuộc tính bất kỳ thuộc U (thoả mãn đk1)
B.2. Loại bỏ thuộc tính thừa trong vế trái của các phụ thuộc hàm
Lần lượt giản ước từng thuộc tính trong vế trái của từng
phụ thuộc hàm trong F1 thu được F1’. Nếu F1’ ≈ F1 thì
loại bỏ thuộc tính đang xét
Khi không có sự giản ước nào xảy ra nữa ta thu được
F2 thỏa mãn đk2
B.3. Loại bỏ phụ thuộc hàm dư thừa
Lần lượt loại kiểm tra từng phụ thuộc hàm f. Nếu F2 \ f ≈ F2
thì loại bỏ f
Khi không cò phụ thuộc hàm nào có thể loại bỏ thi thu đươc
F3 thoả mãn đk3
B.4. Fc = F3
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 12
23
Mục đích của thiết kế CSDL –
nhắc lại
{ Xác định được 1 tập các lược đồ quan hệ cho
phép tìm kiếm thông tin một cách dễ dàng, 
đồng thời tránh được dư thừa dữ liệu (cf. slide 
7)
¾ Phát biểu lại mục đích này sử dụng các khái
niệm vừa học ?
24
Phép tách các lược đồ quan hệ
{ Mục đích
z Thay thế một sơ đồ quan hệ R(A1, A2, , An) bằng
một tập các sơ đồ con {R1, R2, , Rk} trong đó Ri ⊆R 
và R = R1 U R2 U  U Rk
{ Yêu cầu của phép tách
z Bảo toàn thuộc tính, ràng buộc
z Bảo toàn dữ liệu
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 13
25
Phép tách không mất mát thông tin 
(Lossless join)
{ Đ/N: Cho lược đồ quan hệ R(U) phép tách R 
thành các sơ đồ con {R1, R2, , Rk} được gọi là
phép tách không mất mát thông tin đ/v một tập
phụ thuộc hàm F nếu với mọi quan hệ r xác định
trên R thỏa mãn F thì:
r = ΠR1(r) ΠR2(r)  Π Rk (r)
{ Ví dụ:
Supplier(sid, sname,city,NOE, 
pname,colour,quantity)
ÖS1(sid, sname, city, NOE) 
SP1(sid,pname,colour,quantity) 
26
Kiểm tra tính không mất mát thông tin
{ Vào: R(A1, A2, , An), F, phép tách {R1, R2, , Rk}
{ Ra: phép tách là mất mát thông tin hay không
{ Thuật toán
B.1. Thiết lập một bảng k hàng, n cột
Nếu Aj là thuộc tính của Ri thì điền aj vào ô (i,j). 
Nếu không thì điền bij.
B.i. Xét f = XÆY ∈F. 
Nếu ∃ 2 hàng t1, t2 thuộc bảng : t1[X] = t2[X] 
thì t1[Y] = t2[Y], ưu tiên đồng nhất về giá trị a
Lặp cho tới khi không thể thay đổi được giá trị nào trong bảng
B.n. Nếu bảng có 1 hàng gồm các kí hiệu a1, a2,  , an
thì phép tách là không mất mát thông tin. 
ngược lại, phép tách không bảo toàn thông tin.
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 14
27
Phép tách bảo toàn tập phụ thuộc hàm
{ Hình chiếu của tập phụ thuộc hàm
Cho sơ đồ quan hệ R, tập phụ thuộc hàm F, phép tách
{R1, R2,  , Rk} của R trên F. 
Hình chiếu Fi của F trên Ri là tập tất cả XÆY ∈ F+ :
XY ⊆ Ri .
{ Phép tách sơ đồ quan hệ R thành {R1, R2,  , Rk} là
một phép tách bảo toàn tập phụ thuộc hàm F nếu
(F1 ∪ F2  ∪ Fk)+ = F+
hay hợp của tất cả các phụ thuộc hàm trong các hình
chiếu của F lên các sơ đồ con sẽ suy diễn ra các phụ
thuộc hàm trong F. 
28
Bài tập
{ Kiểm tra xem 1 phép tách có bảo toàn tập phụ
thuộc hàm không
{ Kiểm tra xem 1 phép tách có mất mát thông tin 
không
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 15
29
Các dạng chuẩn
{ Vấn đề đặt ra
z Có cần phải tinh chỉnh thiết kế nữa hay không? 
z Thiết kế đã là tốt hay chưa?
¾ Định nghĩa về các dạng chuẩn. 
{ Mục đích: 
Mỗi dạng chuẩn đảm bảo ngăn ngừa (giảm thiểu) một
số các dạng dư thừa hay dị thường dữ liệu
{ Các dạng chuẩn hay sử dụng
z Dạng chuẩn 1 (1NF)
z Dạng chuẩn 2 (2NF)
z Dạng chuẩn 3 (3NF)
z Dạng chuẩn Boye-Code (BCNF)
z Dạng chuẩn 4 (4NF)
30
Dạng chuẩn 1 (1NF)
{ Đ/N: Một sơ đồ quan hệ R được gọi là ở dạng
chuẩn 1 nếu tất cả các miền giá trị của các
thuộc tính trong R đều chỉ chứa giá trị nguyên
tố. 
z Giá trị nguyên tố là giá trị mà không thể chia nhỏ ra
được nữa
{ Ví dụ: Quan hệ không ở 1NF và quan hệ sau
khi chuẩn hóa về 1NF
75ScrewParisSmith
120Bolt
100NutLondonBlake
pricename
productcitysname priceitemcitysname
75ScrewParisSmith
120BoltLondonBlake
100NutLondonBlake
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 16
31
Dạng chuẩn 2 (2NF)
{ Đ/N: Một sơ đồ quan hệ R được coi là ở dạng
chuẩn 2 nếu
z Sơ đồ quan hệ này ở 1NF
z Tất cả các thuộc tính không khóa đều phụ thuộc hàm
đầy đủ vào khóa chính
(Lưu ý, A là một thuộc tính khóa nếu A thuộc một
khóa tối thiểu nào đó của R. Ngược lại A là thuộc tính
không khóa)
32
Phụ thuộc hàm đầy đủ
{ Đ/N: Cho lược đồ quan hệ R(U), F là tập phụ
thuộc hàm trên R. X, Y ⊆ U. Y được gọi là phụ
thuộc đầy đủ vào X nếu:
- XÆY thuộc F+
- !∃ X’ ⊂ X : X’ÆY ∈ F+
{ Các phụ thuộc hàm không đầy đủ còn gọi là
phụ thuộc bộ phận
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 17
33
Ví dụ
Sales(sid, sname, city, item, price)
F = {sidÆ (sname,city), (sid, item) Æ price}
{ Khóa chính (sid,item)
{ sname, city không phụ thuộc hàm đầy đủ vào khóa chính
Ö Sales không thuộc 2NF 
Ö Chuẩn hoá
S(sid, sname, city) 
Sales (sid, item, price)
34
Dạng chuẩn 3 (3NF)
{ Đ/N: Một sơ đồ quan hệ R được coi là ở dạng
chuẩn 3 nếu
z Sơ đồ quan hệ này ở 2NF
z Mọi thuộc tính không khóa đều không phụ thuộc bắc
cầu vào khóa chính
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 18
35
Ví dụ
S (sid, sname, city)
Sales(sid, item, price) 
F = {sidÆ sname, city}
¾ S, Sales thuộc dạng chuẩn 3
ItemInfo(item, price, discount). 
F = {itemÆprice, priceÆdiscount}
{ thuộc tính không khóa discount phụ thuộc bắc cầu vào
khóa chính item. 
¾ Vậy quan hệ này không ở 3NF. 
¾ Chuẩn hoá
ItemInfo(item, price) 
Discount(price, discount)
36
Dạng chuẩn Boye-Codd
{ Đ/N: Một sơ đồ quan hệ R(U) với một tập phụ
thuộc hàm F được gọi là ở dạng chuẩn Boye-Codd
(BCNF) nếu với ∀ XÆA ∈ F+ thì
z A là thuộc tính xuất hiện trong X hoặc
z X chứa một khóa của quan hệ R. 
{ Ví dụ
z R = {A,B,C} ; F = {ABÆC , CÆB}. 
z R không phải ở BCNF vì ∃ CÆB, C không phải là khóa
{ Chú ý: 
z Một quan hệ thuộc 3NF thì chưa chắc đã thuộc BCNF. 
Nhưng một quan hệ thuộc BCNF thì thuộc 3NF
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 19
37
Tách bảo toàn tập phụ thuộc hàm về
3NF
{ Vào: R(U), F (giả thiết F là phủ tối thiểu)
{ Ra: Phép tách bảo toàn tập phụ thuộc hàm về 3NF
{ Thuật toán
B1. Với các Ai ∈ U, Ai ∉ F thì loại Ai khỏi R và lập 1 quan hệ
mới cho các Ai
B2. Nếu ∃ f ∈ F, f chứa tất cả các thuộc tính của R thì kết
quả là R
B3. Ngược lại, với mỗi XÆ A ∈F, xác định một quan hệ
Ri(XA). 
Nếu ∃ XÆAi, XÆAj thì tạo một quan hệ chung R’(XAiAj) 
38
Ví dụ
Cho R = {A,B,C,D,E,F,G}
F = {AÆB, ACDÆE, EFÆG}
{ Xác định phép tách bảo toàn tập phụ thuộc hàm
về 3NF
B1. không lập được quan hệ nào mới. 
B2. !∃ f ∈ F: f chứa tất cả các thuộc tính của R
B3. AÆB Ö R1(AB)
ACDÆE Ö R2(ACDE)
EFÆG Ö R3(EFG)
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 20
39
Tách không mất mát thông tin và bảo
toàn tập phụ thuộc hàm về 3NF
{ Yêu cầu:
z Bảo toàn tập phụ thuộc hàm (như thuật toán trên)
z Đảm bảo là có một lược đồ con chứa khóa của
lược đồ được tách
{ Các bước tiến hành
B1. Tìm một khóa tối thiểu của lược đồ quan hệ R đã
cho
B2. Tách lược đồ quan hệ R theo phép tách bảo toàn
tập phụ thuộc
B3. Nếu 1 trong các sơ đồ con có chứa khóa tối thiểu
thì kết quả của B2 là kết quả cuối cùng. 
Ngược lại, thêm vào kết quả đó một sơ đồ quan hệ
được tạo bởi khóa tối thiểu tìm được ở 1. 
40
Ví dụ
Cho R(A,B,C,D,E,F,G). 
F = {AÆB, ACDÆE, EFÆG}
B1. Khóa tối thiểu cần tìm là ACDF (xem slide 19)
B2. Phép tách bảo toàn tập phụ thuộc hàm R cho 3 sơ đồ con 
R1(AB), R2(ACDE), R3(EFG) (xem slide 40)
B3. Do khóa ACDF không nằm trong bất kỳ một sơ đồ con 
nào trong 3 sơ đồ con trên, ta lập một sơ đồ con mới
R4(ACDF) 
Kết quả cuối cùng ta có phép tách R thành 4 sơ đồ con 
{R1, R2, R3, R4} là một phép tách không mất mát thông tin 
và bảo toàn tập phụ thuộc hàm
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 21
41
Tách không mất mát thông tin về BCNF
{ Vào: Sơ đồ quan hệ R, tập phụ thuộc hàm F.
{ Ra: phép tách không mất mát thông tin bao gồm một tập
các sơ đồ con ở BCNF với các phụ thuộc hàm là hình
chiếu của F lên sơ đồ đó. 
{ Cách tiến hành
B1. KQ = {R}, 
B2. Với mỗi S ∈ KQ, S không ở BCNF, xét X→A ∈ S, 
với điều kiện X không chứa khóa của S và A ∉ X. 
Thay thế S bởi S1, S2 với S1=A ∪{X}, S2 = {S} \ A.
B3. Lặp (B2) cho đến khi ∀S ∈KQ đều ở BCNF
KQ gồm các sơ đồ con của phép tách yêu cầu
42
Phụ thuộc đa trị
{ Đ/N: Cho R(U), X, Y ∈U. X xác định đa trị Y 
hay Y phụ thuộc đa trị vào X nếu với ∀ r xác
định trên R và với hai bộ t1 và t2 bất kỳ mà
t1[X] = t2[X] thì ∃ bộ t3 :
t3[X] = t1[X], t3[Y] = t1[Y] và t3[Z] = t2[Z] 
với Z = U \XY.
z Ký hiệu X→→Y
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 22
43
Hệ tiên đề đối với các phụ thuộc hàm
và phụ thuộc đa trị
Cho R(U), X, Y, Z, W ⊆ U (XY = X ∪ Y) 
{ A1: Phản xạ đối với FD (reflexivity): 
Nếu Y ⊆ X thì X→Y.
{ A2: Tăng trưởng đối với FD (augmentation): 
Nếu X→Y thì XZ→YZ.
{ A3: Bắc cầu đối với FD (transitivity): 
Nếu X→Y, Y→Z thì X→Z.
{ A4: Luật bù đối với MVD (complementation):
Nếu X→→Y thì X→→U \ XY.
44
Hệ tiên đề đối với các phụ thuộc hàm
và phụ thuộc đa trị (2)
Cho R(U), X, Y, Z, W ⊆ U (XY = X ∪ Y) 
{ A5: Tăng trưởng đối với MVD (augmentation):
Nếu X→→Y và V⊆W thì WX→→VY.
{ A6: Bắc cầu đối với MVD (transitivity): 
Nếu X→→Y, Y→→Z thì X→→Z \Y.
{ A7:
Nếu X→Y thì X→→Y.
{ A8: 
Nếu X→→Y, W→Z với Z ⊆ Y và W∩Y=∅
thì X→Z.
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 23
45
Các luật suy diễn bổ sung đối với các
phụ thuộc đa trị
{ Luật hợp (union): 
Nếu X→→Y, X→→Z thì X→→YZ.
{ Luật tựa bắc cầu (pseudotransitivity): 
Nếu X→→Y, WY→→Z thì WX→→Z \ WY.
{ Luật tựa bắc cầu hỗn hợp (mixed pseudotransitivity)
Nếu X→→Y, XY→Z thì X→Z \ Y.
{ Luật tách (decomposition):
Nếu X→→Y, X→→Z thì
X→→Y∩Z, X→→Y \ Z, X→→Z \ Y.
46
Bao đóng của tập phụ thuộc hàm và
phụ thuộc đa trị
{ Đ/N: bao đóng của tập các phụ thuộc hàm và
phụ thuộc đa trị D là tập tất cả các phụ thuộc
hàm và các phụ thuộc đa trị được suy diễn logic
từ D
z Ký hiệu: D+
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 24
47
Tính cơ sở phụ thuộc
{ Vào: Tập các phụ thuộc đa trị M trên tập thuộc tính U và tập
thuộc tính X ⊆ U.
{ Ra: Cơ sở phụ thuộc của X đối với M.
{ Cách tiến hành: 
B1. Đặt T là tập các tập con Z của U: với W→→Y ∈ M mà
W⊆X thì Z là Y \ X hoặc U \ XY.
B2. T được thiết lập cho tới khi là một tập các tập rời nhau, 
nếu có một cặp Z1, Z2 không tách rời nhau thì thay chúng
bởi Z1\ Z2, Z2 \ Z1, Z1∩ Z2 với điều kiện không ghi nhận
tập rỗng. Gọi S là tập thu được sau bước này.
B3. Tìm các phụ thuộc có dạng V→→W trong M và một tập Y 
trong S : Y ∩ W ≠ ∅, Y ∩ V = ∅
Thay Y bằng Y∩W và Y \ W cho đến khi không thay đổi S 
được nữa. 
B4. Tập S thu được sau bước này là cơ sở phụ thuộc của X.
48
Phép tách không mất thông tin
{ Vào: R(A1, A2, , An), F, M, phép tách {R1, R2, , Rk}
{ Ra: phép tách là mất mát thông tin hay không
{ Thuật toán (tổng quát hoá thuật toán trình bày ở slide 28)
B.1. Thiết lập một bảng k hàng, n cột (xem B1. slide 28)
B.i. Xét f = XÆY ∈F:
thực hiện đồng nhất bảng (xem B2. slide 28)
Xét X→→Y: 
nếu ∃ 2 hàng t1, t2 thuộc bảng : t1[X] = t2[X] 
thì thêm vào bảng đó một hàng mới u 
u[X]=t1[X], u[Y]=t1[Y], 
u[R \ XY] = t2[R \ XY] 
Lặp cho tới khi không thể thay đổi được giá trị nào
trong bảng
B.n. Nếu bảng có 1 hàng gồm các kí hiệu a1, a2,  , an
thì phép tách là không mất mát thông tin. 
ngược lại, phép tách không bảo toàn thông tin.
Nhập môn cơ sở dữ liệu
Vũ Tuyết Trinh, b/m Các hệ thống thông tin, 
khoa CNTT, ĐHBKHN 25
49
Dạng chuẩn 4 (4NF)
{ Đ/N: Một quan hệ R ở dạng chuẩn bốn
nếu có một phụ thuộc đa trị X→→Y với Y≠∅, 
Y ⊄ X và XY ⊂ R thì X chứa một khóa của R
{ Chú ý: nếu R chỉ có các phụ thuộc hàm thì
dạng chuẩn bốn chính là dạng chuẩn Boye-
Codd và X→→Y phải có nghĩa là X→Y.
50
Kết luận
{ Tầm quan trọng của thiết kế CSDL
z ảnh hưởng đến chất lượng dữ liệu lưu trữ
z Hiểu quả của việc khai thác dữ liệu
{ Mục đích của thiết kế CSDL: tránh
z Dư thừa dữ liệu
z Dị thường dữ liệu khi thêm/xoá/sửa đổi
z Hiểu quả trong tìm kiếm
¾ Đưa về các dạng chuẩn
z 2NF: giản ước sự dữ thừa để tránh các dị thuờng khi 
cập nhật
z 3NF: tránh các dị thường khi thêm/xoá

File đính kèm:

  • pdfco_so_du_lieu_thiet_ke_csdl_quan_he.pdf