Sách hướng dẫn học tập Toán cao cấp (A1)
Toán cao cấp A1 là học phần đầu tiên của chương trình toán dành cho sinh
viên các nhóm ngành thuộc khối kỹ thuật. Để học tốt môn Toán cao cấp theo
phương thức Đào tạo từ xa, bên cạnh các học liệu: sách, giáo trình in, băng đĩa
hình,., sách hướng dẫn cho người học toán cao cấp là rất cần thiết. Tập sách
hướng dẫn này được biên soạn là nhằm mục đích trên. Tập sách được biên soạn
theo chương trình qui định năm 2001 của Bộ Giáo dục Đào tạo và theo đề
cương chương trình được Học viện Công nghệ BC-VT thông qua năm 2004.
Sách hướng dẫn học toán cao cấp A1 bám sát các giáo trình của các trường
đại học kỹ thuật, giáo trình dành cho hệ chính qui của Học viện Công nghệ BCVT biên soạn năm 2001 và kinh nghiệm giảng dạy nhiều năm của tác giả.
Chính vì thế, tài liệu này có thể dùng để học tập và tham khảo cho sinh viên của
tất cả các trường, các ngành đại học và cao đẳng.
Cách trình bày trong sách thích hợp cho người tự học, đặc biệt phục vụ đắc
lực trong công tác đào tạo từ xa. Trước khi nghiên cứu các nội dung chi tiết,
người đọc nên xem phần hướng dẫn của mỗi chương để thấy được mục đích,
yêu cầu chính của chương đó. Trong mỗi chương, mỗi nội dung, người đọc có
thể tự đọc và hiểu được cặn kẽ thông qua cách diễn đạt và chứng minh rõ ràng.
Sau các chương, người đọc phải tự trả lời được các câu hỏi ôn tập. Nhờ các ví
dụ minh hoạ được đưa ra từ đơn giản đến phức tạp, người đọc có thể coi đó là
bài tập mẫu để tự giải các bài tập có trong tài liệu. Người đọc có thể tự kiểm tra,
đánh giá kiến thức, khả năng thu nhận dựa vào phần hướng dẫn và đáp số được
cung cấp ở những trang cuối sách.
Cũng cần nhấn mạnh rằng, nội dung chính của toán cao cấp là phép tính vi
phân và phép tính tích phân mà nền tảng của nó là phép tính giới hạn của hàm
số. Chính vì thế chúng tôi trình bày khá tỉ mỉ hai chương đầu của tài liệu để
người học tự đọc cũng có thể có được các kiến thức vững vàng để đọc tiếp các
chương sau. Trong quá trình tự đọc và học qua mạng, tuỳ theo khả năng tiếp
thu, học viên có thể chỉ cần nhớ các định lý và bỏ qua phần chứng minh của nó
Tóm tắt nội dung tài liệu: Sách hướng dẫn học tập Toán cao cấp (A1)
SÁCH HƯỚNG DẪN HỌC TẬP TOÁN CAO CẤP (A1) Biên soạn: TS. VŨ GIA TÊ Ths. ĐỖ PHI NGA Giới thiệu môn học 0 1 2 GIỚI THIỆU MÔN HỌC 1. GIỚI THIỆU CHUNG: Toán cao cấp A1 là học phần đầu tiên của chương trình toán dành cho sinh viên các nhóm ngành thuộc khối kỹ thuật. Để học tốt môn Toán cao cấp theo phương thức Đào tạo từ xa, bên cạnh các học liệu: sách, giáo trình in, băng đĩa hình,..., sách hướng dẫn cho người học toán cao cấp là rất cần thiết. Tập sách hướng dẫn này được biên soạn là nhằm mục đích trên. Tập sách được biên soạn theo chương trình qui định năm 2001 của Bộ Giáo dục Đào tạo và theo đề cương chương trình được Học viện Công nghệ BC-VT thông qua năm 2004. Sách hướng dẫn học toán cao cấp A1 bám sát các giáo trình của các trường đại học kỹ thuật, giáo trình dành cho hệ chính qui của Học viện Công nghệ BC- VT biên soạn năm 2001 và kinh nghiệm giảng dạy nhiều năm của tác giả. Chính vì thế, tài liệu này có thể dùng để học tập và tham khảo cho sinh viên của tất cả các trường, các ngành đại học và cao đẳng. Cách trình bày trong sách thích hợp cho người tự học, đặc biệt phục vụ đắc lực trong công tác đào tạo từ xa. Trước khi nghiên cứu các nội dung chi tiết, người đọc nên xem phần hướng dẫn của mỗi chương để thấy được mục đích, yêu cầu chính của chương đó. Trong mỗi chương, mỗi nội dung, người đọc có thể tự đọc và hiểu được cặn kẽ thông qua cách diễn đạt và chứng minh rõ ràng. Sau các chương, người đọc phải tự trả lời được các câu hỏi ôn tập. Nhờ các ví dụ minh hoạ được đưa ra từ đơn giản đến phức tạp, người đọc có thể coi đó là bài tập mẫu để tự giải các bài tập có trong tài liệu. Người đọc có thể tự kiểm tra, đánh giá kiến thức, khả năng thu nhận dựa vào phần hướng dẫn và đáp số được cung cấp ở những trang cuối sách. Cũng cần nhấn mạnh rằng, nội dung chính của toán cao cấp là phép tính vi phân và phép tính tích phân mà nền tảng của nó là phép tính giới hạn của hàm số. Chính vì thế chúng tôi trình bày khá tỉ mỉ hai chương đầu của tài liệu để người học tự đọc cũng có thể có được các kiến thức vững vàng để đọc tiếp các chương sau. Trong quá trình tự đọc và học qua mạng, tuỳ theo khả năng tiếp thu, học viên có thể chỉ cần nhớ các định lý và bỏ qua phần chứng minh của nó. 2 Giới thiệu môn học Nhân đây tác giả cũng lưu ý rằng ở bậc trung học phổ thông của nước ta, chương trình toán cũng đã bao hàm các kiến thức về vi, tích phân. Tuy nhiên các nội dung đó chỉ mang tính chất giới thiệu do lượng thời gian hạn chế, do cấu tạo chương trình. Vì thế nếu không tự đọc một cách nghiêm túc các định nghĩa, định lý cũng sẽ vẫn chỉ nắm được một cách hời hợt và như vậy rất gặp khó khăn trong việc giải các bài tập toán cao cấp. Sách gồm 5 chương tương ứng với học phần gồm 60 đến 75 tiết: Chương I: Giới hạn của dãy số. Chương II: Hàm số một biến số. Chương III: Phép tính vi phân hàm số một biến số. Chương IV: Phép tính tích phân. Chương V: Lý thuyết chuỗi 2. MỤC ĐÍCH MÔN HỌC Học phần này sẽ cung cấp các kiến thức về phép tính vi, tích phân của hàm số một biến, số thực và phép tính vi phân của hàm nhiều biến số. Nội dung của học phần tuân thủ theo quy định về học phần Toán cao cấp A1 của Bộ GD-ĐT dành cho các Trường thuộc khối ngành công nghệ. 3. PHƯƠNG PHÁP NGHIÊN CỨU MÔN HỌC Để học tốt môn học này, sinh viên cần lưu ý những vấn đề sau : 1- Thu thập đầy đủ các tài liệu : ◊ Bài giảng: Toán cao cấp A1.Vũ Gia Tê, Nguyễn Phi Nga, Học viện Công nghệ BCVT, 2005. ◊ Sách hướng dẫn học tập và bài tập: Toán cao cấp A1. Vũ Gia Tê, Nguyễn Phi Nga, Học viện Công nghệ BCVT, 2005. ◊ Bài giảng điện tử: Toán cao cấp A1. Học viện Công nghệ BCVT, 2005. Nếu có điều kiện, sinh viên nên tham khảo thêm: Các tài liệu tham khảo trong mục Tài liệu tham khảo ở cuối cuốn sách này. 3 Giới thiệu môn học 2- Đặt ra mục tiêu, thời hạn cho bản thân: 9 Đặt ra mục các mục tiêu tạm thời và thời hạn cho bản thân, và cố gắng thực hiện chúng Cùng với lịch học, lịch hướng dẫn của Học viện của môn học cũng như các môn học khác, sinh viên nên tự đặt ra cho mình một kế hoạch học tập cho riêng mình. Lịch học này mô tả về các tuần học (tự học) trong một kỳ học và đánh dấu số lượng công việc cần làm. Đánh dấu các ngày khi sinh viên phải thi sát hạch, nộp các bài luận, bài kiểm tra, liên hệ với giảng viên. 9 Xây dựng các mục tiêu trong chương trình nghiên cứu Biết rõ thời gian nghiên cứu khi mới bắt đầu nghiên cứu và thử thực hiện, cố định những thời gian đó hàng tuần. Suy nghĩ về thời lượng thời gian nghiên cứu để “Tiết kiệm thời gian”. “Nếu bạn mất quá nhiều thì giờ nghiên cứu”, bạn nên xem lại kế hoạch thời gian của mình. 3- Nghiên cứu và nắm những kiến thức đề cốt lõi: Sinh viên nên đọc qua sách hướng dẫn học tập trước khi nghiên cứu bài giảng môn học và các tài liệu tham khảo khác. Nên nhớ rằng việc học thông qua đọc tài liệu là một việc đơn giản nhất so với việc truy cập mạng Internet hay sử dụng các hình thức học tập khác. Hãy sử dụng thói quen sử dụng bút đánh dấu dòng (highline maker) để đánh dấu các đề mục và những nội dung, công thức quan trọng trong tài liệu. 4- Tham gia đầy đủ các buổi hướng dẫn học tập: Thông qua các buổi hướng dẫn học tập này, giảng viên sẽ giúp sinh viên nắm được những nội dung tổng thể của môn học và giải đáp thắc mắc; đồng thời sinh viên cũng có thể trao đổi, thảo luận của những sinh viên khác cùng lớp. Thời gian bố trí cho các buổi hướng dẫn không nhiều, do đó đừng bỏ qua những buổi hướng dẫn đã được lên kế hoạch. 5- Chủ động liên hệ với bạn học và giảng viên: Cách đơn giản nhất là tham dự các diễn đàn học tập trên mạng Internet. Hệ thống quản lý học tập (LMS) cung cấp môi trường học tập trong suốt 24 giờ/ngày và 7 ngày/tuần. Nếu không có điều kiện truy nhập Internet, sinh viên cần chủ động sử dụng hãy sử dụng dịch vụ bưu chính và các phương thức truyền thông khác (điện thoại, fax,...) để trao đổi thông tin học tập. 4 Giới thiệu môn học 6- Tự ghi chép lại những ý chính: Nếu chỉ đọc không thì rất khó cho việc ghi nhớ. Việc ghi chép lại chính là một hoạt động tái hiện kiến thức, kinh nghiệm cho thấy nó giúp ích rất nhiều cho việc hình thành thói quen tự học và tư duy nghiên cứu. 7- Trả lời các câu hỏi ôn tập sau mỗi chương, bài. Cuối mỗi chương, sinh viên cần tự trả lời tất cả các câu hỏi. Hãy cố gắng vạch ra những ý trả lời chính, từng bước phát triển thành câu trả lời hoàn thiện. Đối với các bài tập, sinh viên nên tự giải trước khi tham khảo hướng dẫn, đáp án. Đừng ngại ngần trong việc liên hệ với các bạn học và giảng viên để nhận được sự trợ giúp. Nên nhớ thói quen đọc và ghi chép là chìa khoá cho sự thành công của việc tự học! 5 Chương 1: Giới hạn của dãy số 1. 2. CHƯƠNG I: GIỚI HẠN CỦA DÃY SỐ 1.1 MỤC ĐÍCH Trong nhiều vấn đề lý thuyết cũng như thực tế, người ta phải xét những đại lượng mà trong quá trình biến thiên đại lượng đó lấy những giá trị rất gần đến một hằng số a nào đấy. Trong quá trình này, ta gọi đại lượng đang xét là dần đến a hay có giới hạn là a. Như vậy đại lượng có giới hạn là a có thể đạt được giá trị a và cũng có thể không bao giờ đạt được giá trị a, điều này trong quá trình tìm giới hạn không cần quan tâm đến. Ví dụ: 1. Gọi x là biên độ của một con lắc tắt dần. Rõ ràng trong quá trình dao động, biên độ của nó giảm dần tới 0 và thực tế sau khoảng thời gian xác định con lắc dừng lại, ta nói rằng x có giới hạn là 0 trong quá trình thời gian trôi đi. 2. Xét dãy số (un) có dạng 1+= n nun . Quá trình n tăng lên mãi thì un tăng dần về số rất gần 1. Nói rằng dãy số có giới hạn là 1 khi n tăng lên vô cùng. Giới hạn là một khái niệm khó của toán học. Khái niệm giới hạn được cho bởi từ “gần”, để mô tả định tính. Còn định nghĩa chính xác của nó cho bởi cụm từ “ bé hơn ε ” hoặc “lớn hơn M” để mô tả định lượng sẽ được giới thiệu trong chương này. Khi đã hiểu được khái niệm giới hạn thì sẽ dễ dàng hiểu được các khái niệm đạo hàm, tích phân. Bởi vì các phép toán đó đều xuất phát từ phép tính giới hạn. Trong mục thứ nhất cần hiểu được vai trò thực sự của số vô tỉ. Nhờ tính chất đầy của tập số thực mà người ta có thể biểu diễn tập số thực trên trục số - gọi là trục thực và nói rằng tất cả các số thực lấp đầy trục số. Nói khác đi có sự tương ứng 1-1 giữa các số thực và các điểm trên trục số. Cũng nên nhận xét được tập Q không có tính đầy. Học viên cần nắm chắc khái niệm trị tuyệt đối của một số thực và các phép tính về nó. Trong mục thứ hai cần hiểu được vai trò của số phức về mặt lý thuyết cũng như ứng dụng sau này trong kỹ thuật. Thực chất một số phức z là một tương ứng 1-1 với cặp có thứ tự các số thực (x,y). Cần phải nắm vững khái niệm 7 Chương 1: Giới hạn của dãy số modul và acgumen của số phức và các dạng biểu diễn số phức: dạng đại số, dạng lượng giác, dạng hàm mũ. Từ đó có thể làm thông thạo các phép tính trên tập C, đặc biệt dùng công thức Moivre trong các ứng dụng vào lượng giác. Trong mục thứ ba cần nắm vững khái niệm hội tụ, có giới hạn và phân kỳ của dãy số. Nắm vững các tính chất: bị chặn, không bị chặn, đơn điệu của dãy số. Nhờ vào các tính chất này mà thiết lập được các điều kiện cần, điều kiện đủ để dãy số có giới hạn. Khái niệm dãy con của một dãy số cũng là một khái niệm khó. Người học phải đọc kỹ định nghĩa và cố gắng hình dung để hiểu rõ khái niệm này. Đôi khi sự hội tụ hay phân kỳ của một dãy số có thể nhận biết nhờ vào tính chất của vài dãy con. Đặc biệt phải nắm được khái niệm hai dãy kề nhau để từ đó có khái niệm về các đoạn lồng nhau được dùng trong chứng minh định lý Bolzano-Weierstrass. 1.2 TÓM TẮT NỘI DUNG 1.2.1 Số thực a. Các tính chất cơ bản của tập số thực. Tất cả các số hữu tỉ và số vô tỉ tạo thành tập hợp số thực. Kí hiệu tập số thực là R. Tập số vô tỉ là R\Q. 9 Tính chất 1: Tập R là một truờng giao hoán với hai phép cộng và nhân: (R, + , .). 1. RbaRbaRba ∈∈+∈∀ .,,, 2. )().(),()(,,, bcacbacbacbaRcba =++=++∈∀ 3. baababbaRba =+=+∈∀ ,,, 4. R có phần tử trung hoà đối với phép cộng là 0 và đối với phép nhân là 1 aaaRa =+=+∈∀ 00, = = a 1.a a.1 5. Phân phối đối với phép cộng acabcbaRcba +=+∈∀ )(,,, cabaacb +=+ )( 6. Tồn tại phần tử đối của phép cộng 0)(),(, =−+−∃∈∀ aaaRa Tồn tại phần tử nghịch đảo của phép nhân 8 Chương 1: Giới hạn của dãy số 1.,},0{\, 11** =∃=∈∀ −− aaaRRRa 9 Tính chất 2: Tập R được xếp thứ tự toàn phần và đóng kín đối với các số thực dương. 1. hoặc baRba 2. bcacbaRcRba cbcabaRcba ≤⇒≤∈∈∀ +≤+⇒≤∈∀ + ,,, ,,, 3. +++ ∈∈+∈∀ RabRbaRba ,,, 9 Tính chất 3: Tập R là đầy theo nghĩa sau đây: Mọi tập con X không rỗng của R bị chặn trên trong R đều có một cận trên đúng thuộc R và mọi tập con không rỗng X của R bị chặn dưới trong R đều có một cận dưới đúng thuộc R. b. Tập số thực mở rộng Người ta thêm vào tập số thực R hai phần tử kí hiệu là và . Tập số thực mở rộng kí hiệu là ∞− ∞+ R và { }+∞∞−∪= ,RR , các phép toán + và ., quan hệ thứ tự được định nghĩa như sau: 1. Rx∈∀ −∞=+−∞=−∞+ +∞=++∞=+∞+ xx xx )()( )()( 2. −∞=−∞+−∞ +∞=+∞++∞ )()( )()( 3. { }0,, ** >∈=∈∀ ++ xRxRRx −∞=−∞=−∞ +∞=+∞=+∞ xx xx )()( )()( { }0,, ** <∈=∈∀ −− xRxRRx +∞=−∞=−∞ −∞=+∞=+∞ xx xx )()( )()( 4. −∞=+∞−∞=−∞+∞ +∞=−∞−∞=+∞+∞ ))(())(( ))(())(( 5. Rx∈∀ +∞≤∞+ −∞≤∞− +∞<<∞− x c. Các khoảng số thực Cho và .Trong R có chín loại khoảng sau đây: Rba ∈, ba ≤ 9 Chương 1: Giới hạn của dãy số [ ] được gọi là đoạn hay khoảng đóng bị chặn { bxaRxba ≤≤∈= ;, } } } } được gọi là khoảng nửa đóng hoặc nửa mở [ ) { }( ] { bxaRxba bxaRxba ≤<∈= <≤∈= ;, ;, được gọi là các khoảng mở [ ) { } ( ] { } ( ) { ( ) { } ( ) { axRxa xaRxa bxaRxba axRxa xaRxa <∈=∞− <∈=+∞ <<∈= ≤∈=∞− ≤∈=+∞ ;, ;, ;, ;, ;, Các số thực a,b gọi là các mút của khoảng. d. Giá trị tuyệt đối của số thực 9 Định nghĩa: Giá trị tuyệt đối của số thực x, kí hiệu x là một số thực không âm xác định như sau ⎪⎪⎩ ⎪⎪⎨ ⎧ ≤− ≥ = 0 0 xkhix xkhix x 9 Tính chất 1. ),(, xxMaxxRx −=∈∀ 2. 00 =⇔= xx 3. nn n i i n i in xxRx xxRxxxxNn yxxyRyx =∈∀ =∈∀∈∀ =∈∀ ∏∏ == , ,,,,,, ,, 11 321 * K 4. xx Rx 11,* =∈∀ 5. 10 Chương 1: Giới hạn của dãy số ∑∑ == ≤∈∀∈∀ +≤+∈∀ n i i n i in xxRxxxNn yxyxRyx 11 21 * ,,,,, ,, K 6. ( ) ( )yxyxyxMin yxyxyxMaxRyx −−+= −++=∈∀ 2 1),( 2 1),(,, 7. yxyxRyx −≤−∈∀ ,, e. Khoảng cách thông thường trong R 9 Định nghĩa: Khoảng cách trong R là ánh xạ ( ) yxyx RRRd − →× a, : Đó là hình ảnh trực quan về khoảng cách giữa 2 điểm x và y trên đường thẳng trục số thực R. 9 Tính chất 1. ( ) yxyxd =⇔= 0, 2. ( ) ( )xydyxdRyx ,,,, =∈∀ 3. ( ) ( ) ( zydyxdzxdRzyx ,,,,,, +≤∈∀ ) 4. ( ) ( ) ( )zydzxdyxdRzyx ,,,,,, ≤−∈∀ 1.2.2 Số phức a. Định nghĩa: Cho ,một số biểu diễn dưới dạng z=x+iy,trong đó gọi là một số phức.Tập các số phức kí hiệu là C. ( ) 2, Ryx ∈ 12 −=i Gọi x là phần thực của z, kí hiệu Rez =x y là phần ảo của z,kí hiệu là Imz =y Gọi môđun của z,kí hiệu z xác định bởi số thực không âm 022 ≥=+= ryxz 11 Chương 1: Giới hạn của dãy số Gọi Acgumen của z ,kí hiệu Argz xác định bởi số thực Argz= ⎩⎨ ⎧ =∈∈ z xRR θθθ cos;; và ⎪⎭ ⎪⎬⎫= z yθsin , với 0≠z Như vậy Acgumen của z sai khác nhau Zkk ∈,2π và Arg0 không xác định. Vậy số phức z có các dạng viết: 1. z =x+iy gọi là dạng chính tắc hay dạng đại số của số phức z . 2. z = ( )θθ sincos ir + gọi là dạng lượng giác của số phức z. b. Các phép toán trên tập C 9 Phép so sánh bằng nhau ( ) ⎪⎩ ⎪⎨⎧ = =⇔+=+∈∀ ' ' ''4'' ,,,, yy xx iyxiyxRyxyx 9 Phép lấy liên hợp Cho ,liên hợp của z,kí hiệu Ciyxz ∈+= z cho bởi iyxz −= 9 Phép lấy số phức đối Cho z=x+iy∈C,số phức đối của z, kí hiệu –z (đọc là trừ z ) được xác định: -z = -x-iy 9 Phép cộng Cho z = x+iy,z’= x’+iy’,tổng của z và z’,kí hiệu z+z’ xác định như sau: z+z’=(x+x’)+i(y+y’) 9 Phép nhân Cho z=x+iy và z’=x’+iy’,tích của z và z’,kí hiệu z.z’ xác định như sau: z.z’=(xx’-yy’) + i(xy’+x’y) 9 Phép trừ và phép chia Là các phép tính ngược của phép cộng và phép nhân "'." ' )'(' zzzz z z zzzz =⇔= −+=− 9 Phép luỹ thừa,công thức Moavrờ ( Moivre) Cho ( ) Zkirz ∈∀+= ,sincos θθ Gọi là luỹ thừa bậc k của z. Bằng qui nạp ,dễ chứng minh được kz ( )θθ kikrz kk sincos += 12 Chương 1: Giới hạn của dãy số 9 Phép khai căn bậc n của . *Cz∈ Cho . Gọi là căn bậc n của z, kí hiệu ( )θθ sincos,* irzNn +=∈ *C∈ς n z ,xác định như sau: zn =ς Nếu gọi ςρ = và Φ = Argς thì hay là ⎩⎨ ⎧ +=Φ = πθ ρ kn rn 2 nr 1 =ρ và Φ= n kπθ 2+ với 1,...,2,1,0 −= nk . Vậy số z có đúng n căn bậc n, đó là các số phức có dạng: 1,...,2,1,02sin2cos 1 −=⎟⎠ ⎞⎜⎝ ⎛ +++= nk n ki n kr n πθπθς c. Áp dụng số phức vào lượng giác 9 Khai triển θθθ tgnnn ,sin,cos Cho .Áp dụng công thức Moivre và công thức nhị thức Newton *, ... i đó có đạo hàm là vô cùng thì tương ứng tiếp tuyến của đồ thị có tính chất gì? Câu 6. Vì sao nói rằng điều kiện liên tục của hàm số chỉ là điều kiện cần chứ không phải là điều kiện đủ của hàm khả vi? Câu 7. Nêu các tính chất đại số của hàm khả vi. Các tính chất đó còn đúng không đối với các hàm không khả vi? Câu 8. Nêu công thức tính gần đúng số gia của hàm số nhờ vào vi phân của hàm số. Độ chính xác trong phép tính đó phụ thuộc vào đại lượng nào? Câu 9. Định nghĩa đạo hàm cấp cao của hàm số tại điểm x0 Câu 10. Định nghĩa vi phân cấp cao của hàm số tại điểm x0 Câu 11. Hiểu thế nào là tính bất biến của vi phân cấp 1? Câu 12. Viết công thức tính đạo hàm cấp cao của tích hai hàm số. Câu 13. Định nghĩa cực trị của hàm số. Tại sao nói rằng cực trị có tính chất địa phương? Câu 14. Phát biểu định lý Fermat. Vì sao nói rằng đó là điều kiện cần của hàm khả vi? Ý nghĩa của định lý Fermat? Câu 15. Phát biểu và nêu ý nghĩa hình học của định lý Rolle. Nếu một trong các điều kiện của định lý Rolle không thoả mãn thì có tồn tại giá trị trung bình không? Câu 16. Phát biểu và nêu ý nghĩa hình học của định lý Largrange. Nếu một trong các điều kiện của định lý Largrange không thoả mãn thì có tồn tại giá trị trung bình không? 67 Chương 3: Phép tính vi phân hàm số một biến số Câu 17. Phát biểu định lý Cauchy. Chứng tỏ công thức Cauchy là tổng quát nhất về giá trị trung bình. Câu 18. Tại sao nói công thức Largrange là công thức số gia hữu hạn? Câu 19. Phần dư Taylor của hàm số f(x) có phải là một đa thức của x không? Tại sao? Câu 20. Nêu ý nghĩa của công thức Taylor, công thức McLaurin. Câu 21. Nêu các điều kiện đủ của cực trị. Câu 22. Nêu các điều kiện nhận biết hàm số tăng, giảm trên một khoảng. Câu 23. Định nghĩa hàm lồi, hàm lõm. Mô tả hình học. Câu 24. Nêu cách tìm điểm uốn, khoảng lồi, khoảng lõm của đường cong. Câu 25. Nêu quy tắc L’Hospital . Cho ví dụ chứng tỏ rằng quy tắc đó không mô tả điều kiện cần của sự tồn tại giới hạn. Câu 26. Trình bày cách tìm tiệm cận của đường cong. Câu 27. Trình bày sơ đồ tổng quát khảo sát và vẽ đồ thị hàm số. 3.4 BÀI TẬP CHƯƠNG III Câu 1. Dùng định nghĩa hãy tính các đạo hàm các hàm số a. 12)( += xxf b. x xxf 1)( += c. x xxf += 1)( d. xxf =)( Câu 2. Tính các đạo hàm của các hàm số a. 32 )1()1( +−= xxy b. ⎪⎩ ⎪⎨ ⎧ > ≤ = − 1,1 1, 22 x e xex y x c. ⎪⎩ ⎪⎨ ⎧ = ∈≠= 0,0 ,0,1sin * x Nnx x x y n d. xxy .= 68 Chương 3: Phép tính vi phân hàm số một biến số Câu 3. Chứng tỏ rằng nếu f (x) khả vi tại x=a thì )(')()()(.lim aafaf ax xafafx ax −=− − → Câu 4. Chứng minh rằng hàm số )()( xaxxf ϕ−= trong đó )(xϕ là hàm số liên tục và 0)( ≠aϕ không khả vi tại x=a. Câu 5. Tính các đạo hàm fp’(0) và ft’(0) của các hàm số sau đây: a. 2sin)( xxf = b. 22 22 arcsin)( xa xaxf + −= c. ⎪⎩ ⎪⎨ ⎧ = ≠ += 0,0 0, 1)( 1 x x e x xf x x d. ⎪⎩ ⎪⎨ ⎧ = ∈≠= − 0,0 ,0,1)( 2 1 x Nnxe xxf x n Câu 6. Tính đạo hàm của các hàm số: a. 2 ln xtgy = b. )1ln( 2 ++= xxy c. xey 1sin2= d. 4 2 1 2arcsin x xy += e. 3 3 11 ⎟⎠ ⎞⎜⎝ ⎛ += x y f. 21 2 2 1 x xarctgy −= g. 1ln 1lnln + −= xx xxy h. 22 1 xax y − = i. 4 2 1 ln ax xy − = k. 5)4cos1( 1 x y += l. x xy + −= 1 1cos2 m. ⎟⎠ ⎞⎜⎝ ⎛ ++= x xtgy 11 n. x xy + −= 1 1arcsin o. xy 532 logloglog= Câu 7. Tính đạo hàm sau bằng phương pháp đạo hàm lôga: a. b. 2xxy = xxy cos)(sin= c. 5 2 43 )3( 2)1( − −+= x xxy d. x x xy ⎟⎠ ⎞⎜⎝ ⎛ += 1 69 Chương 3: Phép tính vi phân hàm số một biến số e. f. xxy sin2 )1( += 3 22 2 )1( )1( − += x xxy g. xxy 1 = h. 22 xxy xx−= i. )1ln( −−= xxx e xy x x k. xy x sinlogcos= Câu 8. Tính vi phân của hàm số a. 2 ln 2 1 sin2 cos 2 xtg x xy −= b. Cho . Tính 12)( 3 +−= xxxf )1(),1( dffΔ )0( >a c. Với 2ax << chứng minh a xaxa 2 2 +≈+ )0( >a d. Với nax << chứng minh 1−+≈+ nn n na xaxa Áp dụng tính 10 1010 3 24210 −= e. xxxy 62 13 2 1 ++= tại 1=x và 2,0=dx Câu 9. Tính đạo hàm của của các hàm cho theo tham số: a. , 'xy ϕ3cosax = ϕ3sinby = b. , )1ln( 2tx += arctgtty −= c. 1 1 2 3 − += t tx , y= 12 −t t d. , )sin( ttax −= )cos1( tay −= Câu 10. Tính a. )2( )( 963 3 xxxxd d −− b. ⎟⎠ ⎞⎜⎝ ⎛ x x xd d sin )( 2 c. )(cos )(sin xd xd Câu 11. Chứng minh các hệ thức sau: a. với '1'. 3 yyx += tt y t tx 2 2 3,1 33 += += b. ''1 2 yyy =+ với 2 2 2 1 ,11ln 1 1 t ty t t t x + =++− + = 70 Chương 3: Phép tính vi phân hàm số một biến số c. với 2'.2'. yxyy = t ty t tx ln23,ln1 2 +=+= Câu 12. Chứng minh các hệ thức sau: a. Cho x xf −= 1 1ln)( . Chứng minh )!1()0()( −= nf n b. Cho a x exxf −= 2)( . Chứng minh 2)( )1.(.)1()0( − −−= n n n a nnf c. Cho . Chứng minh nxxf =)( n n n fff 2 ! )1(... !1 )1(')1( )( =+++ Câu 13. Tính đạo hàm cấp n của các hàm số: a. b. xxy −+= 22 )ln( baxy += c. dcx baxy + += c. xy = e. xxy n .= f. x xy += 1 Câu 14. Tính các đạo hàm cấp cao sau: a. , tính yxxy sin)1( 2 += (20) b. x ey x = , tính y(10) c. , tính yxey x sin.= (n) d. , tính ybxaxy sin.sin= (n) e. x xy − += 1 1 , tính y(100) f*. 3 1 x xy += , tính y (n) g*. , tính y)sin( cbxey ax += (n) Câu 15. Chứng minh hàm số thỏa mãn: xey arcsinα= Nnynxynyx nnn ∈=+−+−− ++ ,0)()12()1( )(22)1()2(2 α Câu 16. Chứng minh hàm số thỏa mãn xexy αα −−−= .)1( *)1()()1( ,0)()1( Nnynyxnyx nnn ∈=−+−− −+ αα 71 Chương 3: Phép tính vi phân hàm số một biến số Câu 17. Chứng minh hàm số xn exy 1 1−= thỏa mãn xn n n e x y 1 1 )( )1( + −= Câu 18. Chứng minh đa thức Lơgiăng (Legendre) [ ] ,...2,1,0,)1( !2 1)( )(2 =−= mx m xP mm mm thỏa mãn phương trình 0)1('2")1( 2 =++−− mmm PmmxPPx Câu 19. Chứng minh đa thức Trêbưsép- Hécmít ( Chebyshev – Hermite): thỏa mãn phương trình: ,...2,1,0,)()1()( )( 22 =−−= meexH mxxmm 02'2" =+− mmm mHxHH Câu 20. Áp dụng đạo hàm tính các tổng sau: a. 12 ...321 −++++= nn nxxxA b. 22 )1(....4.3.3.22.1 −−++++= nn xnnxxB c. 122222 ...321 −++++= nn xnxxC Câu 21. Chứng minh rằng phương trình không có quá 2 nghiệm thực với n chẵn, không có quá 3 nghiệm thực với n lẻ. *,0 Nnqpxxn ∈=++ Câu 22. Chứng minh rằng m∀ phương trình không thể có 2 nghiệm khác nhau trong [0,1]. 033 =+− mxx Câu 23. Chứng tỏ rằng phương trình f’(x)=0 có 3 nghiệm thực biết rằng )3)(2)(1()( +++= xxxxxf Câu 24. Chứng minh rằng số nghiệm của phương trình f(x)=0 không nhiều hơn quá 1 đơn vị của số nghiệm của phương trình f’(x)=0 Câu 25. Cho f(x) khả vi trên [a,b] và có đạo hàm đến cấp hai trên (a,b). Chứng minh rằng có thể tìm được ít nhất số ),( bax∈∀ ),( baCx ∈ sao cho )(" 2 ))(()()()()()( xCf bxaxax ab afbfafxf −−=−− −−− Câu 26. a. Không cần tìm đạo hàm của hàm số . Hãy cho biết số nghiệm của phương trình f’(x)=0 và chỉ ra các khoảng chứa nghiệm đó. )4)(1()( 22 −−= xxxf b. Cho với chứng tỏ rằng f’(x)=0 có nghiệm trong khoảng (0,1). nm xxxf )1(1)( −+= *, Nnm ∈ 72 Chương 3: Phép tính vi phân hàm số một biến số Câu 27. Cho hàm f(x) liên tục trên [a,b], khả vi trong (a,b). Chứng tỏ rằng nếu áp dụng định lí Rolle cho hàm số: 1)( 1)( 1)( )( afa bfb xfx xF = sẽ nhận được định lí Lagrange Câu 28. Chứng minh các bất đẳng thức sau đây: a. )0(,ln ab b ba b a a ba ≤<−≤≤− b. ) 2 0(, coscos 22 παβα βαβαβ βα <≤<−≤−≤− tgtg c. Nnabbanababanb nnnn ∈<−≤−≤− −− ),(),()( 11 d. baarctgbarctga −≤− Câu 29. a. Tìm các hằng số a,b để tồn tại giới hạn hữu hạn của f(x) khi 0→x x b x a xx xf −−−= 233 1 sin 1)( b. Tìm hằng số k để tồn tại giới hạn hữu hạn của hàm f(x) khi 0→x )(arcsin1)( 2 kx x xxf +−= Câu 30. Dùng qui tắc L’Hospital tìm các giới hạn sau: a. x x x ex xe +∞→ 2 lim b. x x x sin1 1lim 1 π− 2 − → c. )ln( )ln(lim axax ee ax − − → d. )1ln( 2lim 1 x xtg x −−→ π e. x x x sinln21 lnlim 0 ++→ f. xg x x 2 cot lim 0 π π → Câu 31. Tìm các giới hạn sau: a. ⎟⎠ ⎞⎜⎝ ⎛ −−→ 1 11lim 0 xx ex b. )1ln(.lnlim 1 −→ xxx c. 100 1 0 2lim − − → xe x x d. ⎟⎠ ⎞⎜⎝ ⎛ −−−→ qpx x q x p 11 lim 1 73 Chương 3: Phép tính vi phân hàm số một biến số e. ⎥⎦ ⎤⎢⎣ ⎡ −−−→ )1(3 1 )1(2 1lim 31 xxx f. ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − → xgxx cos2cot lim 2 ππ π Câu 32. Tìm các giới hạn sau: a. b. x x x ln 0 )1(lim +→ x x tgx cos2)(limπ→ 2 c. xx x ex 1 2 0 )(lim +→ d. 2 1 0 lim x x x tgx ⎟⎠ ⎞⎜⎝ ⎛ → e. )1ln( 1 0 lim −→ xe x x f. 2 1 0 ln lnlim x x x x bxb axa ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ − − → Câu 33. Tìm các khoảng tăng, giảm và cực trị của các hàm số sau: a. )1( xxy += b. xxy ln= c. 2 3 2 )1( −= xy d. x ey x = e. )0(,2 >−= axaxxy Câu 34. Tìm cực trị các hàm số sau: a. )1(2 xxxy −= b. )2( += xxy c. 3 2 3 2 )2( −+= xxy d. 2 2x xey −= e. x xy ln1 += f. 3 cos3 2 cos2 xxy += g. 2sin xy = h. arctgxxy −+= 21ln Câu 35. Chứng minh các đẳng thức sau: a. 21 arcsin x xarctgx + = b. 21 arcsin x xarctgx − = Câu 36. Chứng minh các bất đẳng thức sau: a. ,2sin xtgxx ≥+ ⎟⎠ ⎞⎜⎝ ⎛∈ 2 ,0 πx b. 2 2 11cos xx −> , 0>∀x c. β β α α tgtg < , 2 0 πβα <<< 74 Chương 3: Phép tính vi phân hàm số một biến số d. , xex +>1 0≠∀x e. xxxx ≤+≤− )1ln( 2 2 , 0≥∀x f. xxxx ≤≤− sin 6 3 , 0≥∀x g. 3 3xxtgx +> , 2 0 π<< x h. ,132 x x −> 1>∀x i. )1ln(.2 2xarctgxx +≥ x∀ k. , 1 )1(2ln + −> x xx 1>∀x l. , 1 )1ln( x arctgxx +>+ 0>∀x Câu 37. Chứng minh tính duy nhất nghiệm của các phương trình sau: a. 0cossin2 =++ xxx b. ,012 3 2 23 =+− xx 0≤x c. ,xxx cba =+ cbca <<<< 0,0 d. 2 sin22 xaax ++= , a∀ e. ,0cossin 323 =++ aaxx a∀ Câu 38. Tìm giá trị lớn nhất, bé nhất của các hàm số: a. , 1 1 2 2 xx xxy ++ +−= 10 ≤≤ x b. , 1 22 x b x ay −+= 0,0,10 >><< bax c. ,2 2xtgtgxy −= 2 0 π<≤ x d. , 1 1 x xarctgy + −= 10 ≤≤ x 75 Chương 3: Phép tính vi phân hàm số một biến số Câu 39. Tìm các tiệm cận của các đường cong a. b. xxy ln+= x xy sin= c. xexy −= 2 d. 9 2 2 2 + +−= x xxy e. ⎟⎠ ⎞⎜⎝ ⎛ += x exy 1ln f. 1 2 += xxey Câu 40. Xét tính lồi lõm và tìm điểm uốn của hàm số: a. 122 3 += x xy b. xexy )1( 2+= c. 5 2)( bxay −−= d. )0(ln >= a x a x ay Câu 41. Khảo sát hàm số sau: a. b. 2 )2( 2 xexy −+= x xy ln= c. 4 14 xx y += d. xx y cossin 1 += e. x x y ⎟⎠ ⎞⎜⎝ ⎛ += 11 f. xey x −= 1 3.5 HƯỚNG DẪN VÀ ĐÁP SỐ BÀI TẬP CHƯƠNG III Câu 1. a. 12 1)(/ += xxf , b. 2 / 11)( x xf −= , c. 2 32 / 2 11)( x x xf −−= , d. 0, 2 1)(/ ≠= x x xf Câu 2. a. )15(1)1( 2/ −+−= xxxy b. ⎪⎩ ⎪⎨ ⎧ > ≤−= − 1,0 1,)1(2 22 / x xexx y x c. ⎪⎩ ⎪⎨ ⎧ = ≥≠⎟⎠ ⎞⎜⎝ ⎛ −= − 0,0 2,0,1cos1sin2/ x nx xx nxx y n d. xy 2/ = Câu 5. a. , b. 1)0(,1)0( // −== tp ff afaf tp 2)0(,2)0( // =−= c. , d. 1)0(,0)0( // == tp ff 0)0(/ =f 76 Chương 3: Phép tính vi phân hàm số một biến số Câu 6. a. x y sin 1/ = b. , 1 1 2 / + = x y c. ,2sin1 1sin 2 / 2 x e x y x−= d. , 1 4 4 / x xy += e. , 111 2 3 / ⎟⎠ ⎞⎜⎝ ⎛ +−= xxx y f. , 1 1 2 / += xy g. , 1ln )1(ln2 22 / − += xx xy h. , )2( 32 / xax axy − −= i. ,2 5 / axx y −= k. ,)4cos1( 4sin20 6 / x xy += l. , )1( 1 12sin 2 / xx x x y + ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ + − = m. , 111cos2 1 22 2 / ⎟⎞⎜⎛ ++⎟⎞⎜⎛ + −= xtgxx xy ⎠⎝⎠⎝ xx n. , )1(2)1( 1/ xxx y −+= o. 5ln.3ln.2ln)(loglog.log 1 535 / xxx y = Câu 7. a. . )1ln2(1/ 2 += + xxy x b. ,sinlnsin sin cos)(sin 2 cos/ ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ −= xx nx xxy x c. 5 2 422 / )3( 2)1(. )3)(2(20 36130257 − −+ −− +−= x xx xx xxy d. . 1 ln 1 1 1 / ⎟⎠ ⎞⎜⎝ ⎛ +++⎟⎠ ⎞⎜⎝ ⎛ += x x xx xy x e. .)1ln(cos 1 sin2)1( 22 sin2/ ⎥⎦ ⎤⎢⎣ ⎡ ++++= xxx xxxy x f. 3 22 2 4 24 / . )1( )1( )1(3 16 − + − ++= x xx xx xxy g. .ln1 2 / x xyy −= 77 Chương 3: Phép tính vi phân hàm số một biến số h. )ln122(ln/ x x yy −−+= i. ).1(lnln1 1/ −= + xxx e y xx k. ).sinlncosln(cot cosln 1 2 / xtgxxgx x y += Câu 8. a. . sin 2 x dxdy −= b. ,)()(3)1( 32 xxxf Δ+Δ+Δ=Δ xdf Δ=)1( . d. ...9955,11010 3 ≈ e. .3466,0)1( =dy Câu 9. a. ,/ ϕtg a byx −= b. ,2 / ty x = c. , )32( 1 2 2 / ttt ty x −+ += d. . 2 cot/ tgyx = Câu 10. a. b. ,341 63 xx −− ,sincos 2 1 2 ⎟⎠ ⎞⎜⎝ ⎛ − x xx x c. .cot gx− Câu 13. a. [ ] ,2ln2)1(2)( nxnxny −−+= b. , )( )!1()1( 1)( n n nn bax any + −−= − c. , )( ))((! 1 1 )( + − + −−= n n n dcx cbcadny d. , 2 !)!32()1( 12 1 )( − − −−= nn n n x ny e. , 2 !)!12()( xny n n += f. ).12( 2 !)!32()1( 2 12 1 )( +−−−= + − nx x ny n n n n Câu 14. a. b. .cos40sin)379( 2)20( xxxxy −−= ∑ = + −= 10 0 110 )10( !)1( n n nnx x nCey . c. ∑ = ⎟⎠ ⎞⎜⎝ ⎛ += n k k n xn kxCey 0 )( 2 sin π . 78 Chương 3: Phép tính vi phân hàm số một biến số d. . 2 )(cos)( 2 )(cos)( 2 1)( ⎭⎬ ⎫ ⎩⎨ ⎧ ⎥⎦ ⎤⎢⎣ ⎡ +++−⎥⎦ ⎤⎢⎣ ⎡ +−−= ππ nxbabanxbabay nnn e. . 1)1(2 )399(!!197 100100 )100( xx xy −− −= f. . . )1(3 )23)(53...(4.1.)1( 3 1 1 )( + + + +−−= nn n n x xnny g. )sin()( 222)( ϕncbxbaey n axn +++= . ⎪⎪⎩ ⎪⎪⎨ ⎧ + = + = 22 22 cos sin ba a ba b ϕ ϕ Câu 26. a. ),1;2(1 −−∈x ),1;1(2 −∈x ).2;1(3 ∈x b. )1()0( ff = Câu 29. a. , 2 1;0 == ba b. .0=k Câu 30. a. 0, b. ∞ , c. 1, d. ,∞ e. , 2 1 f. . 2 2π Câu 31. a. , 2 1 b. 0, c. 0, d. , 2 qp − e. , 12 1 f. –1 Câu 32. a. 1, b. 1, c. d. 3e 3 1 e e. e f. )ln(ln 2 1 22 ba e − Câu 33. a. Tăng không có cực trị. b. Tăng ),0[ +∞ ⎥⎦ ⎤⎜⎝ ⎛ e 1,0 , giảm ⎟⎠ ⎞⎢⎣ ⎡ +∞,1 e , xCĐ e 1= . c. Giảm ( ],1;−∞− tăng [ )+∞;1 . d. Giảm ( ) tăng ( ,1;0,0;∞− ) [ )+∞;1 , 1=CTx . e. Giảm ⎥⎦ ⎤⎢⎣ ⎡ aa; 4 3 , tăng , 4 3;0 ⎥⎦ ⎤⎢⎣ ⎡ a . 4 3 D axC = Câu 34. a. min max),0;0( . 7 4 7 6; 49 22 33 ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ b. min max c. min ),0;0( ).1;1(− ),4;0( 3 min ),4;2( 3 max ).2;1( 79 Chương 3: Phép tính vi phân hàm số một biến số d. min ,1;1 ⎟⎠ ⎞⎜⎝ ⎛ −− e max .1;1 ⎟⎠ ⎞⎜⎝ ⎛ e e. max f. min ).1;1( , 5 cos5; 5 112 ⎥⎦ ⎤⎢⎣ ⎡ −⎟⎠ ⎞⎜⎝ ⎛ ± ππk min[ ],1;)12(6 π+k max ),5;12( πk max . 5 2cos5; 5 212 ⎥⎦ ⎤⎢⎣ ⎡ ⎟⎠ ⎞⎜⎝ ⎛ ± ππk g. min max),0;0( .1; 2 14 ⎟⎟⎠ ⎞ ⎜⎜⎝ ⎛ +± πn h. min . 4 2ln 2 1;1 ⎟⎠ ⎞⎜⎝ ⎛ − π Câu 38. a. , 3 1=m .1=M b. c. .)( 2bam += .1=M d. ,0=m . 4 π=M Câu 39. a. .0=x b. 0=y . c. =y 0. d. ,2−=y ).1(2 −= xy e. ,1 e x −= .1 e x +y = f. x=0, y=x Câu 40. a. { }6;0 ±=Ux b. { }.3;1 −−=Ux c. .φ d. .2 3 aexU = 80
File đính kèm:
- sach_huong_dan_hoc_tap_toan_cao_cap_a1.pdf