Luận án Nghiên cứu khả năng loại màu thuốc nhuộm hoạt tính và phân hủy chất diệt cỏ/dioxin của vi sinh vật sinh enzyme laccase
Trong những năm gần đây, ô nhiễm bởi các loại hóa chất trong đó có các chất
hữu cơ khó phân hủy (POPs) do con người tạo ra ngày càng được phát hiện nhiều, mức
độ ngày càng nghiêm trọng và hậu quả gây nên rất nhiều hệ lụy cho sức khỏe con
người, môi trường và hệ sinh thái. Các chất gây ô nhiễm môi trường phổ biến trong
nước thải công nghiệp hiện nay ở Việt Nam gồm các hợp chất của phenol, các hợp chất
đa vòng thơm chứa halogen và thuốc nhuộm, v.v. Ở các nước đang phát triển như Việt
Nam, việc sử dụng và xả thải hóa chất trong nông nghiệp, công nghiệp, y dược và các
ngành sản xuất khác không có khả năng kiểm soát đã gây nên những hậu quả nghiêm
trọng với môi trường và con người. Nhiều chất ô nhiễm được thải ra môi trường có độc
tính cao, thời gian bán hủy dài, khả năng tích lũy cao ở các dạng khác nhau trong hệ
sinh thái dẫn đến giảm đa dạng sinh học và xuất hiện nhiều loại bệnh hiểm nghèo.
Ngoài ra, ô nhiễm thuốc bảo vệ thực vật, các chất diệt cỏ chứa dioxin có nguồn gốc từ
chiến tranh hoặc nước thải ngành dệt nhuộm vẫn hàng ngày âm thầm gây tác động lớn
tới môi trường và sức khỏe con người. Những chất ô nhiễm này đều là những chất rất
bền vững và khó bị phân hủy bằng các công nghệ, giải pháp đơn giản nên để tiến tới xử
lý triệt để ô nhiễm cần tính tới các giải pháp tích hợp các công nghệ, giải pháp để xử lý
và quản lý bền vững.
Tóm tắt nội dung tài liệu: Luận án Nghiên cứu khả năng loại màu thuốc nhuộm hoạt tính và phân hủy chất diệt cỏ/dioxin của vi sinh vật sinh enzyme laccase
BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- PHÙNG KHẮC HUY CHÚ NGHIÊN CỨU KHẢ NĂNG LOẠI MÀU THUỐC NHUỘM HOẠT TÍNH VÀ PHÂN HỦY CHẤT DIỆT CỎ/DIOXIN CỦA VI SINH VẬT SINH ENZYME LACCASE LUẬN ÁN TIẾN SỸ KỸ THUẬT MÔI TRƯỜNG Hà Nội, 2018 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- PHÙNG KHẮC HUY CHÚ NGHIÊN CỨU KHẢ NĂNG LOẠI MÀU THUỐC NHUỘM HOẠT TÍNH VÀ PHÂN HỦY CHẤT DIỆT CỎ/DIOXIN CỦA VI SINH VẬT SINH ENZYME LACCASE Chuyên ngành: Kỹ thuật môi trường Mã số: 9.52.03.20 LUẬN ÁN TIẾN SỸ KỸ THUẬT MÔI TRƯỜNG NGƯỜI HƯỚNG DẪN KHOA HỌC PGS. TS Đặng Thị Cẩm Hà Hà Nội, 2018 LỜI CAM ĐOAN Tôi xin cam đoan: Luận án tiến sỹ “Nghiên cứu khả năng loại màu thuốc nhuộm hoạt tính và phân hủy chất diệt cỏ/dioxin của vi sinh vật sinh enzyme laccase” là công trình nghiên cứu do chính tôi tự thực hiện. Các kết quả nghiên cứu trong luận án là hoàn toàn trung thực và chưa được ai công bố trong bất kỳ công trình nghiên cứu nào khác. Các trích dẫn sử dụng trong luận án đã được ghi rõ tên tác giả tài liệu tham khảo. Hà Nội, ngày tháng năm 2018 TÁC GIẢ LUẬN ÁN NCS Phùng Khắc Huy Chú Lời cảm ơn Để hoàn thành được luận án, tôi xin bày tỏ lòng biết ơn sâu sắc và chân thành nhất đến PGS.TS Đặng Thị Cẩm Hà, Phòng Công nghệ sinh học tái tạo môi trường, Viện Công nghệ sinh học, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, là người thầy đã tận tâm, tận tình và nhiệt thành đã hướng dẫn, chỉ bảo, tạo mọi điều kiện thuận lợi và kịp thời trong những lúc khó khăn, vất vả để giúp tôi thực hiện và hoàn thành luận án này. Tôi chân thành cảm ơn các đồng chí lãnh đạo, chỉ huy Binh chủng Hóa học; các đồng chí lãnh đạo, chỉ huy, các đồng chí, đồng nghiệp công tác tại Phòng Khoa học quân sự và Viện Hóa học - Môi trường quân sự, Bộ Tư lệnh Hóa học đã hết sức giúp đỡ, tạo điều kiện thuận lợi và tối đa về mặt tinh thần và một phần vật chất cho tôi khi tôi tham gia học tập, nghiên cứu và hoàn thành luận án của mình. Bên cạnh đó, để có thể hoàn thành được luận án này, tôi chân thành cảm ơn ThS Đào Thị Ngọc Ánh, ThS Lê Việt Hưng, ThS Nguyễn Hải Vân cùng toàn thể các đồng nghiệp trong phòng Công nghệ sinh học tái tạo môi trường,Viện Công nghệ sinh học đã giúp đỡ, làm việc nhóm một cách có hiệu quả để thực hiện một số nội dung liên quan đến luận án. Để hoàn thành chương trình nghiên cứu sinh đến được đích cuối cùng, tôi chân thành cảm ơn lãnh đạo, các thầy, các cô và các anh chị phụ trách đào tạo của Học viện Khoa học và Công nghệ, đặc biệt là lãnh đạo, các thầy, cô của Viện Công nghệ môi trường, Viện Hàn lâm Khoa học và Công nghệ Việt Nam đã tận tình truyền đạt, chỉ dạy những kiến thức, kinh nghiệm và chia sẽ những khó khăn của bản thân tôi trong những năm tháng đã qua. Hoàn thành được luận án nghiên cứu này, tôi đã liên tục nhận được sự động viên to lớn của gia đình, dòng họ và đặc biệt là của “đồng chí vợ” đã luôn ở bên, chủ động khắc phục mọi khó khăn của gia đình nhỏ bé của tôi để động viên và tạo điểu kiện thuận lợi nhất để tôi yên tâm hoàn thành chương trình đào tạo tiến sỹ này. Tôi rất cảm ơn sự động viên, khích lệ của các đồng nghiệp, bạn bè trong và ngoài đơn vị đã dành cho tôi. Luận án được thực hiện với sự tài trợ về kinh phí của Đề tài độc lập cấp Nhà nước: "Nghiên cứu metagenome của vi sinh vật vùng đất ô nhiễm chất diệt cỏ/dioxin nhằm tìm kiếm các gene, các enzyme mới có khả năng phân hủy dioxin", Mã số DTDLCN.13/14 do PGS.TS Đặng Thị Cẩm Hà làm chủ nhiệm Đề tài. Hà Nội, ngày tháng năm 2018 NGHIÊN CỨU SINH Phùng Khắc Huy Chú MỤC LỤC Mục lục Danh mục các ký hiệu và chữ viết tắt Danh mục các bảng Danh mục các hình vẽ và đồ thị MỞ ĐẦU 1 CHƯƠNG 1 TỔNG QUAN TÀI LIỆU 4 1.1. Laccase, laccase-like và vi sinh vật sinh tổng hợp laccase, laccase-like 4 1.1.1. Giới thiệu chung về laccase 4 1.1.1.1. Cấu trúc phân tử của laccase 4 1.1.1.2. Cơ chế xúc tác của laccase 5 1.1.1.3. Một số đặc tính sinh hóa của laccase 6 1.1.1.4. Vi sinh vật sinh tổng hợp laccase 7 1.1.1.5. Khả năng của laccase trong phân hủy các hợp chất hữu cơ 8 1.1.1.6. Khả năng của laccase trong phân hủy các hợp chất hữu cơ có clo 12 1.1.2. Giới thiệu về laccase-like 13 1.2. Đặc điểm ô nhiễm nước thải dệt nhuộm và công nghệ xử lý 17 1.2.1. Đặc điểm chung của thuốc nhuộm và nước thải dệt nhuộm 17 1.2.1.1. Đặc điểm chung của thuốc nhuộm 17 1.2.1.2. Đặc điểm chủng của nước thải dệt nhuộm 18 1.2.2. Các phương pháp xử lý màu thuốc nhuộm 19 1.2.2.1. Phương pháp hóa lý 19 1.2.2.2. Phương pháp oxy hóa nâng cao 20 1.2.2.3. Phương pháp sinh học 21 1.3. Hiện trạng ô nhiễm chất diệt cỏ/dioxin ở Việt Nam và các công nghệ xử lý 26 1.3.1. Hiện trạng ô nhiễm 26 1.3.2. Công nghệ xử lý dioxin và các hợp chất hữu cơ đa vòng thơm 28 1.3.3. Phương pháp phân hủy sinh học xử lý dioxin và các hợp chất hữu cơ 30 1.3.3.1. Phân hủy 2,4-D, 2,4,5-T, dioxin và các hợp chất tương tự bởi laccase 31 1.3.3.2. Phân hủy 2,4-D, 2,4,5-T, dioxin và các hợp chất tương tự bởi nấm sinh tổng hợp enzym ngoại bào 33 CHƯƠNG 2 ĐỐI TƯỢNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 40 2.1. Đối tượng nghiên cứu 40 2.1.1. Vật liệu để phân lập vi sinh vật và các chủng nấm kế thừa 40 2.1.2. Đối tượng nghiên cứu xử lý 40 2.1.3. Môi trường sử dụng trong nghiên cứu 41 2.1.4. Thiết bị chính sử dụng trong nghiên cứu 41 2.2. Phương pháp nghiên cứu 42 2.2.1. Phân lập, nuôi cấy vi sinh vật 43 2.2.1.1. Phân lập chủng nấm 43 2.2.1.2. Phân lập xạ khuẩn 43 2.2.1.3. Lựa chọn môi trường nuôi cấy để chủng nấm sinh tổng hợp laccase cao 43 2.2.1.4. Nuôi cấy xạ khuẩn sinh tổng hợp laccase-like trên các nguồn chất hữu cơ vòng thơm khác nhau 43 2.2.2. Phân loại vi sinh vật 44 2.2.2.1. Phân loại VSV theo hình thái khuẩn lạc 44 2.2.2.2. Phân loại VSV theo phương pháp sinh học phân tử 44 2.2.3. Phương pháp hóa - sinh 45 2.2.3.1. Xác định hoạt tính laccase, laccase-like sử dụng ABTS 45 2.2.3.2. Tinh sạch, nhận diện protein của laccase, laccase-like 46 2.2.3.3. Xác định đặc tính protein của laccase, laccase-like tinh sạch 48 2.2.4. Xác định khả năng loại màu thuốc nhuộm 49 2.2.4.1. Xác định khả năng loại màu thuốc nhuộm bởi laccase, laccase-like 49 2.2.4.2. Xác định khả năng loại màu thuốc nhuộm bởi chủng nấm 51 2.2.5. Xác định khả năng phân hủy chất diệt cỏ/dioxin 52 2.2.5.1. Thực nghiệm phân hủy chất diệt cỏ/dioxin bằng laccase thô 52 2.2.5.2. Thực nghiệm phân hủy chất diệt cỏ/dioxin bằng chủng nấm sinh tổng hợp laccase 54 2.2.5.3. Phương pháp phân tích để xác định khả năng phân hủy chất diệt cỏ/dioxin 55 2.3. Phương pháp xử lý số liệu 55 CHƯƠNG 3 KẾT QUẢ NGHIÊN CỨU VÀ BIỆN LUẬN 57 3.1. Phân lập, tuyển chọn và định tên chủng nấm và xạ khuẩn có khả năng sinh tổng hợp laccase, laccase-like 57 3.1.1. Phân lập và lựa chọn để phân loại nấm đảm có hoạt tính laccase cao 57 3.1.2. Phân lập và phân loại xạ khuẩn có khả năng sinh trưởng trên môi trường chứa chất diệt cỏ/dioxin và sinh tổng hợp laccase-like 60 3.1.2.1. Phân lập xạ khuẩn 60 3.1.2.2. Phân loại chủng xạ khuẩn XKBHN1 và XKBiR929 61 3.1.3. Môi trường để chủng nấm, chủng xạ khuẩn sinh tổng hợp laccase, laccase-like 64 3.1.3.1. Môi trường thích hợp để chủng nấm FBV40 sinh tổng hợp laccase 64 3.1.3.2. Khả năng sinh tổng hợp laccase-like của XKBHN1 và XKBiR929 trên môi trường chứa các chất hữu cơ clo khác nhau 65 3.2. Đặc điểm hóa-lý của laccase, laccase-like tinh sạch 68 3.2.1. Tinh sạch laccase của nấm đảm Rigidoporus sp. FBV40 68 3.2.2. Tinh sạch laccase-like của xạ khuẩn Streptomycese sp. XKBiR929 70 3.2.3. Đặc tính hóa-lý của laccase và laccase-like tinh sạch 71 3.2.3.1. Các yếu tố ảnh hưởng đến laccase tinh sạch 71 3.2.3.2. Đặc điểm động học của laccase tinh sạch 78 3.2.3.3. Đặc tính hóa-lý của laccase thô 79 3.2.3.4. Đặc tính hóa - lý của laccase-like tinh sạch 81 3.3. Loại màu thuốc nhuộm và phân hủy chất diệt cỏ chứa dioxin 84 3.3.1. Loại màu thuốc nhuộm bởi laccase, laccase-like 84 3.3.1.1. Loại màu thuốc nhuộm tổng hợp bởi laccase thô của chủng nấm FBV40 84 3.3.1.2. Loại màu hoạt tính sử dụng trong quân đội bởi laccase thô 89 3.3.1.3. Loại màu thuốc nhuộm hoạt tính MN.FBN bởi Lac1 tinh sạch 96 3.3.1.4. Loại màu thuốc nhuộm hoạt tính MN.FBN bởi laccase-like tinh sạch của chủng xạ khuẩn XKBiR929 97 3.3.2. Loại màu thuốc nhuộm hoạt tính bởi Rigidoporus sp.FBV40 98 3.3.2.1. Khả năng loại màu một số thuốc nhuộm hoạt tính sử dụng để nhuộm vải may quân trang 98 3.3.2.2. Loại màu thuốc nhuộm MN.FBN ở các nồng độ khác nhau 101 3.3.2.3. Loại màu thuốc nhuộm MN.FBN khi có mặt D-glucose 102 3.3.2.4. Loại màu thuốc nhuộm MN.FBN khi có mặt các loại đường khác nhau 103 3.3.2.5. Loại màu thuốc nhuộm MN.FBN khi có mặt các nguồn nitơ khác nhau 106 3.3.3. Phân hủy chất diệt cỏ/dioxin bởi laccase và nấm sinh tổng hợp laccase 108 3.3.3.1. Phân huỷ chất diệt cỏ/dioxin bởi laccase thô 108 3.3.3.2. Phân huỷ chất diệt cỏ/dioxin bởi nấm sinh tổng hợp laccase 112 KẾT LUẬN VÀ KIẾN NGHỊ 121 DANH MỤC CÁC CÔNG TRÌNH CÔNG BỐ CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN 123 TÀI LIỆU THAM KHẢO 124 PHỤ LỤC Danh mục các chữ viết tắt 2,3,7,8-TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin 2,4,5-T 2,4,5-trichlorophenoxyacetic acid 2,4,5-TCP 2,4,5-trichlorophenol 2,4-D 2,4-dichlorophenoxyacetic acid 2,4-DCP 2,4-dichlorophenol ABTS 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) BH Sân bay Biên Hòa CDD Chất diệt cỏ chứa dioxin CGK Chất gắn kết DBF Dibenzofuran DCĐ Dịch chiết đất DD Dibenzo-p-dioxin DBP Dibromophenol đtg Đồng tác giả HBT 1-Hydroxybenzotriazole HCHC Hợp chất hữu cơ LiP Lignin peroxidase LMCO Laccase multicopper oxidase MN.FBN Megafix navy FBN MnP Mangan peroxidase MR.EBR Megafix red EBR MT.BES Megafix turquoise BES MY.BES Megafix yellow BES MY.EG Megafix yellow EG MCDD Mono chlorodibenzo-p-dioxin NN.SG Nova navy SG NY.FN2R Nova yellow RN2R NY.S3R Nova yellow S3R NY1 acid red 299 NY5 acid blue 281 NY7 acid red 266 PAH Polycyclic Aromatic Hydrocacbon = hydrocacbon đa nhân PCB Polychlorinatedbiphenyl PCDDs Polychlorinated dibenzo-p-dioxin PCDFs Polychlorinated dibenzofuran POPs Các hợp chất hữu cơ khó phân hủy ppm Parts per million (mg/kg) ppt Parts per trillion (ng/kg) RBBR Remazol Brilliant Blue R TBP Tribromophenol VA Valli anilin ViO Violuric acid VK Vi khuẩn VSV Vi sinh vật Danh mục bảng Bảng Tên bảng Trang Bảng 1.1 Ứng dụng của laccase trong phân hủy các hợp chất hữu cơ vòng thơm 9 Bảng 1.2 Khả năng sinh laccase và hiệu suất phân hủy PAH, thuốc bảo vệ thực vật ở Việt Nam 10 Bảng 1.3 Ứng dụng của laccase trong phân hủy các chất hữu cơ có clo 12 Bảng 1.4 Phân loại màu và tính chất các màu thuốc nhuộm 17 Bảng 1.5 Các phương pháp xử lý nước thải dệt nhuộm 20 Bảng 1.6 Ứng dụng của laccase trong phân hủy sinh học thuốc nhuộm 23 Bảng 1.7 Các công nghệ có thể xử lý đất, trầm tích ô nhiễm dioxin 30 Bảng 1.8 Phân hủy các đồng loại dioxin bởi nấm đảm 36 Bảng 2.1 Tổng hợp các thực nghiệm nghiên cứu loại màu thuốc nhuộm bởi laccase, laccase-like 49 Bảng 2.2 Đánh giá khả năng loại màu thuốc nhuộm bởi nấm đảm sinh tổng hợp laccase 52 Bảng 3.1 Đặc điểm mẫu nấm đã phân lập được 58 Bảng 3.2 Hoạt tính laccase-like của các chủng xạ khuẩn 61 Bảng 3.3 Đặc điểm hình thái khuẩn lạc hai chủng xạ khuẩn XKBHN1 và XKBiR929 61 Bảng 3.4 Ảnh hưởng của chất ức chế lên hoạt tính Lac1, Lac2 của FBV40 75 Bảng 3.5 Ảnh hưởng của các ion kim loại lên hoạt tính Lac1 và Lac2 76 Bảng 3.6 Quan hệ giữa nồng độ ABTS với hoạt tính laccase tinh sạch 78 Bảng 3.7 Các yếu tố môi trường ảnh hưởng tới hoạt tính laccase thô của FBV40 79 Bảng 3.8 So sánh hiệu suất loại màu thuốc nhuộm sử dụng laccase từ FBV40 và các chủng nấm đảm khác 87 Bảng 3.9 Hiệu suất loại màu thuốc nhuộm và biến động hoạt tính laccase theo thời gian (%) 89 Bảng 3.10 Biến động hoạt tính laccase trong quá trình loại màu thuốc nhuộm MN.FBN bởi FBV40 trong môi trường chứa các loại đường khác nhau 104 Bảng 3.11 Khả năng phân hủy 2,4,5-T tinh khiết bằng laccase thô chủng FBV40 109 Bảng 3.12 Khả năng phân hủy chất diệt cỏ và các chất ô nhiễm khác bằng laccase thô 110 Bảng 3.13 Khả năng phân hủy 2,4,5-T trong đất ô nhiễm bởi chủng FBV40 112 Bảng 3.14 Khả năng phân hủy 2,4-D, 2,4,5-T trong đất bởi đơn chủng FBV40 và hỗn hợp chủng FBV40, FBD154 và FNBLa1 113 Bảng 3.15 Khả năng phân hủy 2,3,7,8-TCDD bởi đơn chủng và hỗn hợp chủng 117 Danh mục hình Hình Tên hình Trang Hình 1.1 Hình ảnh cấu trúc không gian ba chiều của laccase 5 Hình 1.2 Cơ chế giả định sự phân hủy 3-(2-hydroxy-1-naphthylazo) benzenesulfonic Acid bởi laccase 22 Hình 2.1 Sơ đồ thực hiện nghiên cứu 42 Hình 3.1 Hỉnh ảnh sợi, bào tử dưới kính hiển vị điện tử và ảnh phân lập mặt trước, mặt sau của chủng FBV40 58 Hình 3.2 Cây phát sinh chủng loài chủng nấm FBV40 60 Hình 3.3. Hình thái khuẩn lạc và cuống sinh bào tử chủng XKBHN1 (A, C) và chủng XKBiR929 (B, D) 62 Hình 3.4 Cây phát sinh chủng loài 2 chủng XKBHN1 và XKBiR929 63 Hình 3.5 Hoạt tính laccase thô chủng FBV40 ở các môi trường nuôi cấy 65 Hình 3.6 Khả năng sinh tổng hợp laccase-like theo thời gian 67 Hình 3.7 Hoạt tính laccase tinh sạch của chủng FBV40 69 Hình 3.8 Diện di protein chủng FBV40 69 Hình 3.9 Hoạt tính laccase-like tinh sạch của chủng XKBiR929 70 Hình 3.10 Phản ứng oxy hóa của laccase-like tinh sạch với ABTS 71 Hình 3.11 Ảnh hưởng của pH lên Lac 1, Lac 2/FBV40 72 Hình 3.12 Ảnh hưởng của nhiệt độ, độ bền nhiệt lên hoạt tính 73 Hình 3.13 Cơ chất đặc hiệu đối với Lac1 (A) và Lac 2 (B) 74 Hình 3.14 Ảnh hưởng của chất ức chế lên Lac 1 (A), Lac 2 (B) của chủng FBV40 76 Hình 3.15 Ảnh hưởng của ion kim loại lên Lac 1, Lac 2/FBV40 77 Hình 3.16 Mối quan hệ giữa nồng độ cơ chất với hoạt tính Lac1 (A) và Lac2 (B) 78 Hình 3.17 Ảnh hưởng của pH lên hoạt tính (A) và độ bền pH (B); ảnh hưởng của nhiệt độ (C, D); động học xúc tác (E, G) và ảnh hưởng của chất ức chế và ion kim loại (H, K) lên hoạt tính laccase thô của chủng FBV40 81 Hình 3.18 Ảnh hưởng của pH lên hoạt tính (A) và độ bền (B); động học xúc tác (C, D) và ảnh hưởng của chất ức chế (E) và ion kim loại (G) lên laccase-like tinh sạch của XKBiR929 82 Hình 3.19 Khả năng loại màu NY1 (A) và sự thay đổi hoạt tính laccase theo thời gian (B) 85 Hình 3.20 Khả năng loại màu NY5 (A) và sự thay đổi hoạt tính laccase theo thời gian (B) 85 Hình 3.21 Khả năng loại màu NY7 (A) và sự thay đổi hoạt tính laccase theo thời gian (B) 86 Hình 3.22 Phổ UV-Vis và hình ảnh loại màu một số thuốc nhuộm hoạt tính t ... Quang, Nguyễn Thị Lệ, Nguyễn Bá Hữu, Đặng Thị Cẩm Hà, Phân hủy sinh học các hợp chất vòng thơm và thuốc nhuộm của chủng nấm sợi FBH11 phân lập từ đất nhiễm chất diệt cỏ/dioxin tại điểm nóng Biên Hòa. Hội nghị Khoa học kỷ niệm 35 năm Viện Khoa học và Công nghệ Việt Nam, (2010), Hà Nội. 108. Nguyễn Quang Huy, Nguyễn Bá Hữu, Nguyễn Thị Thanh Ngân, Đặng Thị Cẩm Hà, Sinh enzim ngoại bào peroxidaza, laccaza và phân hủy các hợp chất vòng thơm của chủng xạ khuẩn XKBH1.Tạp chí Khoa học và Công nghệ, (2012), 50 (3), pp.285-295. 109. Nguyễn Thị Lan Anh, Đặng Thị Cẩm Hà, Phân loại và xác định hoạt tính laccase của chủng XKDNP22 phân lập từ đất nhiễm chất diệt cỏ/dioxin. Tạp chí Công nghệ Sinh học, (2011), 9(4), pp.511-519. 110. Nguyễn Văn Minh, Các giải pháp tạm thời ngăn chặn lan toả dioxin và lựa chọn công nghệ xử lý dioxin ở sân bay Biên Hoà, Tuyển tập Báo cáo hội thảo “Chia sẻ kinh nghiệm đánh giá ô nhiễm dioxin/POPs và các công nghệ xử lý tại Việt Nam. Dự án “Xử lý dioxin tại các vùng ô nhiễm nặng ở Việt Nam”), Văn phòng Ban chỉ đạo 33, (2013). 111. Nishida T,. Mimura A., and Takahara Y., Lignin biodegradation by wood- rotting fungi I. Screening of lignindegrading fungi. Mokuzai Gakkaishi, (1988), 34, p.530-536. 112. Olajuyigbe F., and Fatokun C.O., Biochemical characterization of an extremely stable pH-versatile laccase from Sporothrix carnis CPF-05. Int. J. Biol. Macromol, (2017), 94, p.535-543. 113. Omar S.F.M., Laccase enzymes: purification, structure to catalysis and tailoring. Protein Peptide Letters, (2013), 20(12). 114. Palonen H.M.S., L. Viikari, and K. Kruus, Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp. Enzyme and Microbial Technology, (2003), 33(6), p.854-862. 115. Papinutti V.L., and Forchiassin F., Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran. Journal of Industrial Microbiology & Biotechnology Advances, (2003), 30(3), p.157-160. 116. Parmar P.R., Decolorization of acridine red dye by the fungi Aspergillus species, Journal of Scientific and Innovative Research, (2014), 3(4), p.454-459 117. Parshetti G.K., Kalme S.D., Gomare S.S., Govindwar S.P., Biodegradation of Reactive blue - 25 by Aspergillus ochraceus NCIM–1146, Bioresource technology, (2007), (98), p.3638-3642. 118. Paszko T., Muszyński P., Materska M., Bojanowska M., Kostecka M., and 132 Jackowska I., Adsorption and degradation of phenoxyalkanoic acid herbicides in soils: A review. Environ Toxicol Chem, (2016), (35), 271-286. 119. Perumal K., Biochemical studies of lignolytic enzymes of Gonoderma lucidum, a white rot fungus and its application in treatment of paper mill effluent, (1997), University of Madras. 120. Pointing S.B., Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, (2001), 57(1-2), p.20-33. 121. Po-Ting C., Chii-Gong T., Tuan-Hua D.H., Su-May Y., Novel rigidoporus microporus laccase, (2010), US 20100184186 A1. 122. Praveen K., Usha K. Y., Lignolytic enzymes of a mushroom Stereum ostrea isolated from wood logs, Enzyme Research, (2011), p. 6 pages. 123. Raghukumar C., Fungi from marine habitats: an application in bioremediation, Mycological Research, (2000), 104(10), p.1222-1226. 124. Rampal D.S., Laccase productionby some Phlebia species. Journal of BasicMicrobiology, (2002), 42, p.295-301. 125. Rao M. A., Scelza R., Acevedo F., Diez M.C., and Gianfreda L., Enzymes as useful tools for environmental purposes, Chemosphere, (2014), 107, 145-162. 126. Ratanapongleka K., Phetsom J., Decolorization of synthetic dyes by crude laccase from Lentinus polychrous Lev, International Journal of Chemical Engineering and Applications, (2014), 5(1), pp.26-30. 127. Reddy C.A., The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol, (1995), 6, p.320-328. 128. Reiss R., Ihssen J., Richter M., Eichhorn E., Schilling B., Laccase versus Laccase-Like Multi-Copper Oxidase: A Comparative Study of SimilarEnzymes with Diverse Substrate Spectra, (2013), PLoS ONE 8(6). 129. Rodriguez C.S., and G´ubitz G. M., Influence of redox mediators and metal ions on synthetic acid dye decolourization by crude laccase from Trametes hirsuta. Chemosphere, (2005), 58(4), p.417-422. 130. Rohilla SK., Salar RK., Kumar B., Evaluation of different Aspergillus species for degradation of a reactive dye Orange M2R, Annals of Biological Research, (2012), 3 (9), p.4491-4496. 131. Ron M.D., Carol B., Bruce G., Review of emerging, innovative technologies for the destruction and decontamination of POPs and the identification of promising technologies for use in developing countries, International Centre for Sustainability Engineering and Science Faculty of Engineering The University of Auckland Auckland New Zealand, (2004). 132. Rosli., Development of biological treatment system for reduction of COD from textile wastewater, Master Dessertation, University Technology Malaysia, 2006. 133. Roubelakis A., Laccase activity could contribute to cell-wall reconstitution in regenerating protoplasts, Phytochemistry, (1997), 46(3), p.421-425. 134. Sakaki T., Shinkyo R., Takita T., Ohta M., Inouye K., Biodegradation of polychlorinated dibenzo-p-dioxins by recombinant yeast expressing rat CYP1A subfamily, Arch Biochem Biophys, (2002), (401), pp.91-98. 135. Santo T., Yukinori K., and Michifusa K., Bioremediation of dioxin - contamiated soil by Fungi screened from nature, Pakistan Journal of Biological Science, (2007),10(3), p.486-491. 133 136. Saraiva J.A., and Xavier A.M.R.B., Effect of the inducers veratryl alcohol, xylidine, and ligninosulphonates on activity and thermal stability and inactivation kinetics of laccase from Trametes versicolor. Applied Biochemistry and Biotechnology Advances, (2012), 167(4), p.685-693. 137. Sarayu K., Swaminathan K., Sandhya S., Assessment of degradation of eight commercial reactive azo dyes individually and in mixture in aqueous solution by ozonation. Dyes and Pigments, (2007), (75), p.362-368 138. Satoshi T., Matayoshi N., Takahiko M., Ryuichiro K., and Kokki S., Degradation of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by the White Rot Fungus Phanerochaete sordida YK-624, Applied and Environmental Microbiology, (1996), 62(12), p.4323-4328. 139. Schneider P., Mondorf K., Characterization of a Coprinus cinereus laccase, Enzyme Microbial Technology, (1999), 25. p.502-508. 140. Sen S., Demirer G.N, Anaerobic treatment of real textile wastewater with a fluidized bed reactor, Water Research, (2003), 37. p.1868-1878. 141. Shumaila K., Muhammad A., Degradation and Mineralization of Azo Dye Reactive Blue 222 by Sequential Photo-Fenton’s Oxidation Followed by Aerobic Biological Treatment Using White Rot Fungi, Bulletin of Environmental Contamination and Toxicology, (2013), 90(2). p.208-215. 142. Singh G, A.B., Kaur P., Capalash N., and Sharma P., Laccase from prokaryotes: a newsource for an old enzyme, Reviews in Environmental Science and Biotechnology, (2011), 10(4). p.309-326. 143. Singh H., Mycoremediation-Fungal Bioremediation, Wiley Interscience, (2006), Hoboken. 144. Soares G.M., De Amorim M.T., Costa-Ferreira M, Use of laccase together with redox mediators to decolourize Remazol Brilliant Blue R, J. Biotechnol, (2001), 89. pp.123-129. 145. Song Z., Zhou J., Wang J., Yan B., Du C., Decolorization of azo dyes by Rhodobacter sphaeroides, Biotechnol. Lett, (2003), 25. p.1815-1818. 146. Sridhar S., Chinnathambi V., Arumugam P., Suresh P.K, In silico and in vitro physicochemical screening of Rigidoporus sp. crude laccase-assisted decolorization of synthetic dyes approaches for a cost-effective enzyme- based remediation methodology, Appl Biochem Biotechnol, (2013), 169(3). p.911-922. 147. Staples A.M.M.a.R.C., Laccase:new functions for an old enzyme, Phytochemistry, (2002), 60(6), p.551-565. 148. Susana C., María J.M., Ángel T.M., Lignin-Derived Compounds as Efficient Laccase Mdiators for Decolorization of Different Types of Recalcitrant Dyes, Appl Environ Microbiol, (2005), 71(4). p.1775-1784. 149. Takada S., Nakamura M., Matsuda T., Kondo R. and Sakai K, Degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by the white rot fungus Phanerochaete sordida YK-624, Appl. Environ. Microbiol, (1996), 62. p.4323-4328. 150. Thurston F.C., The structure and function of fungal laccases, Microbiology, (1994), 140(1). p.19-26. 151. Torres E., and Le Borgne S., Potential use of oxidative enzymes for the detoxification of organic pollutants, Applied Catalysis B, (2003), 46(1), p.1-15. 134 152. Trần Thị Thu Hiền, Hoàng Thị Nhung, Nguyễn Hải Vân, Nguyễn Thị Lan Anh, Đinh Thị Thu Hằng, Đặng Thị Cẩm Hà, Nghiên cứu phân lập và ảnh hưởng của một số điều kiện nuôi cấy lên khả năng sinh tổng hợp laccase bởi chủng nấm thu thập từ rơm mục Ninh Bình, Tạp chí Công nghệ Sinh học, (2013), 11(2). p.265-274. 153. Tripathi B.M., Kumari P., Saxena A.K., Arora D.K., Genetic and metabolic diversity of streptomycetes in pulp and paper mill effluent treated crop fields, World J Microbiol Biotechnol, (2011), 27. p.603-1613. 154. UNEP, Review of emerging, innovative technologies for the destruction and decontamination of POPs and the identification of promissing technologies for use in developing countries, (2004). 155. Upadhyay P., Shrivastava R., and Agrawal P.K., Bioprospecting and biotechnological applications of fungal laccase, Biotech, (2016), 6.15p 156. Ursula K.,and Martin R., Multiple Multi-Copper Oxidase Gene Families in Basidiomycetes–What for, Current Genomics, (2011), 12. p72-94. 157. US.EPA., Reference tollutent reference guide to non-combustion technologies for remediation of persistent organic pollutants in soil second edition-2010, www.clu-in.org/POPs), 9-2010. 158. Utkarsha S., Jyoti P.J., Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron, Biotechnology and Bioprocess Engineering, (2011), 16(1), 196p. 159. Valli K., Wariishi H., and Gold M.H., Degradation of 2,7-dichlorodibenzo- p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium, J. Bacteriol, (1992), 174. p.2131-2137. 160. Văn phòng ban chỉ đạo 33/Bộ Tài nguyên và môi trường, Báo cáo tổng thể về tình hình ô nhiễm dioxin tại 3 điểm nóng sân bay Biên Hòa, Đà Nẵng và Phù Cát, T11/2013. 161. Vantamuri A.B., Kaliwal B.B., Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textiledyes, Biotech, (2016), 6. p.189. 162. Vasconcelos A.F.D.A.M.B., Dekker R.F.H., Scarminio I.S., and Rezende M. I., Optimization of laccase production by Botryosphaeria sp. in the presence of veratryl alcohol by the response-surface method, Process Biochemistry, (2000), 35(10). p.1131-1138. 163. Verma A.K., Bhunia P., Dash R.R., Decolorization and COD reduction efficiency of magnesium over iron based salt for the treatment of textile wastewater containing diazo and anthraquinone dyes, Int. J. Chemi. Bio. Eng., (2012), (6). pp.116-123. 164. Viikari M.L.N., Enzymatic oxidation of alkenes, Journal of Molecular Catalysis B, (2000), 10(4). p.435-444. 165. Vijay B., Reddy G., Dinesh K., Joshi and Michael H.G, Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichornitus squalens, Micro biology, (1997), 143. p.2353-2360. 166. Vroumsia T,. Steiman R,. Seigle M.F, Benoit G.JL, Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4- DCP), Chemosphere, (2005), 60. p.1471-1480. 167. Wang T.N., Lu L., Li G.F, Li J., Xu T.F., and Zhao M, Decolorization of 135 the azo dye reactive black 5 using laccase mediator system, African Journal of Biotechnology, (2011), 10(75). p.17186-17191. 168. Wei W., Pei J.G., Function and mechanism of a low-molecular-weight peptide produced by Gloeophyllum trabeum in biodegradation of cellulose, Journal of Biotechnology, (2003), 101 (2). p.119-130. 169. Wijannarong S., Aroonsrimorakot S., Thavipoke P., Sangjan S., Removal of Reactive Dyes from Textile Dyeing Industrial Effluent by Ozonation, Process. APCBEE Procedia, (2013), (5). pp.279-282. 170. Xiao Y., S.Z., Hu Q., Jiang W., Pu Ch, and Shi Y., Immobilization of fungal laccase on chitosan and its use in phenolic effluents treatment, Weishengwu Xuebao, (2003), 43. p.245-250. 171. Yadav J.S, Reddy C.A, Mineralization of 2,4-dichlorophenoxyacetic Acid (2,4-D) and mixtures of 2,4-D and 2,4,5-trichlorophenoxyacetic acid by Phanerochaete chrysosporium, Appl Environ Microbiol, (1993), 59. p.2904-2908. 172. Yan J., Niu J., Chen D., Chen Y., Irbis C., Screening of Trametes strains for efficient decolorization of malachite green at high temperatures and ionic concentrations, Int Biodeterior Biodegrad, (2014), 87. p.109-115. 173. Yang J., Li W., Ng TB., Deng X., Lin J.Y.X., Laccases:Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation, Front. Microbiol, (2017), 8. p.832. 174. Yaver D.S., F.X., Golightly E.J., Purification, characterization, molecular cloning, and expression of two laccase genes fromthe white rot basidiomycete Trametes villosa, Applied and Environmental Microbiology, (1996), 62(3), p.834-841. 175. Yaver D.S., M.D.C.O., Xu F., Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase Lcc1, Applied and Environmental Microbiology, (1999), 65(11), p. 4943-4948. 176. Yemendzhiev H,Z., Krastanov A., Decolorization of Synthetic Dye Reactive Blue 4 by Mycelial Culture of White-Rot Fungi Trametes Versicolor 1, (2014), 23. p.1337-1339. 177. Zhao D.X., Zhang D., Cui M.Z., Characterisation of a novel white laccase from the deuteromycete fungus Myrothecium verrucaria NF-05 and its decolourisation of dyes, PLoS One 7, (2012), 38817. 178. Zhu M., Zhang G. , Meng L., Wang H. , Gao K., T. Ng, Purification and characterization of a white laccase with pronounced dye decolorizing ability and HIV-1 reverse transcriptase inhibitory activity from Lepista nuda, Molecules, (2016), 21, p.1-16. 179. Zille A., Górnacka B., Rehorek A., Cavaco-Paulo A, Degradation of azo dyes by Trametes villosa laccase over long periods of oxidative conditions. Appl. Environ. Microbiol, (2005), 71(11). p.6711-6718. 180. Zolgharnein J., Bagtash M., Asanjarani N., Hybrid central composi te design approach for simultaneous optimization of removal of alizarin red S and indigo carmine dyes using cetyltrimethylammonium bromidemodified TiO2 nanoparticles. J. Environ. Chem. Eng, (2014b),2, p.988-1000.
File đính kèm:
- luan_an_nghien_cuu_kha_nang_loai_mau_thuoc_nhuom_hoat_tinh_v.pdf
- Huy chu LATS tom tat tieng anh.pdf
- Huy chu LATS tom tat tieng viet.pdf
- Trang thong tin dong gop moi.pdf
- Trich yeu luan an.pdf