Synthesis and properties of undoped and transition metal (Mn2+, Cr3+) doped Zn2Sio4 and zn2snO4 phosphors
Although my name is on the cover of this dissertation, many people were of
great importance to this research. I want to take a moment to extend my gratitude to
the involved.
The first, I would like to express my sincerest thanks to my supervisor, Prof.
Pham Thanh Huy, excellence and estimable teacher, for all of his supports. His
dedication to science has been encouraging me so much, protected me from the
confusion since I started studying and researching at the Advanced Institute for
Science Technology (AIST).
This dissertation was carried out at AIST, together with several research groups
researches. I had garnered variable information from these seminars with free
discussions coming from all of our group members. Possibly just as important as the
practical aid was the friendly, cooperative atmosphere at AIST; it made me enjoy
virtually every second of working on my dissertation. I wish to thank Associate prof.
Dao Xuan Viet; Dr. Nguyen Tu; Dr. Nguyen Duy Hung, and all of my teammates for
their friendships with kind-hearts and unconditional assistance.
The last few months weren’t easy, and I want to thank all my dearest friends,
who helped me get back on track when I lost my laptop and found many difficulties
in life. Without your care, understanding, and motivational speeches, this thesis
would no doubt look different and not for the better. Your friendship makes me
realize what a lucky person I am.
For the last, more than I can say, I would like to express manifest thanks to my
husband and two children for always being by my side, putting their truth in me
during my duration at AIST
Tóm tắt nội dung tài liệu: Synthesis and properties of undoped and transition metal (Mn2+, Cr3+) doped Zn2Sio4 and zn2snO4 phosphors
MINISTRY OF EDUCATION AND TRAINING HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY LE THI THAO VIEN Synthesis and properties of undoped and transition metal (Mn2+, Cr3+) doped Zn2SiO4 and Zn2SnO4 phosphors DOCTORAL DISSERTATION ON MATERIAL SCIENCES HANOI – 2020 MINISTRY OF EDUCATION AND TRAINING HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY LE THI THAO VIEN Synthesis and properties of undoped and transition metal (Mn2+, Cr3+) doped Zn2SiO4 and Zn2SnO4 phosphors Majors: Material Sciences Code: 9440122 DOCTORAL DISSERTATION ON MATERIAL SCIENCES ADVISORS: 1. Prof. Dr. PHAM THANH HUY 2. Dr. NGUYEN THI KHOI HANOI – 2020 i COPYRIGHT DECLARATION This thesis compresses only my research results. It does not contain any previous data submitted by any people or organizations except that have been marked in the references. Hanoi, 15/9/2020 Advisors PhD. Student Prof. Dr. Pham Thanh Huy Le Thi Thao Vien ii ACKNOWLEDGEMENTS Although my name is on the cover of this dissertation, many people were of great importance to this research. I want to take a moment to extend my gratitude to the involved. The first, I would like to express my sincerest thanks to my supervisor, Prof. Pham Thanh Huy, excellence and estimable teacher, for all of his supports. His dedication to science has been encouraging me so much, protected me from the confusion since I started studying and researching at the Advanced Institute for Science Technology (AIST). This dissertation was carried out at AIST, together with several research groups researches. I had garnered variable information from these seminars with free discussions coming from all of our group members. Possibly just as important as the practical aid was the friendly, cooperative atmosphere at AIST; it made me enjoy virtually every second of working on my dissertation. I wish to thank Associate prof. Dao Xuan Viet; Dr. Nguyen Tu; Dr. Nguyen Duy Hung, and all of my teammates for their friendships with kind-hearts and unconditional assistance. The last few months weren’t easy, and I want to thank all my dearest friends, who helped me get back on track when I lost my laptop and found many difficulties in life. Without your care, understanding, and motivational speeches, this thesis would no doubt look different and not for the better. Your friendship makes me realize what a lucky person I am. For the last, more than I can say, I would like to express manifest thanks to my husband and two children for always being by my side, putting their truth in me during my duration at AIST. Lastly, I want to mention my father, mother, my parents-in-law, and two sisters, and thank them for making me the person that I have become. Le Thi Thao Vien iii CONTENTS LIST OF FIGURES ............................................................................................. viii LIST OF TABLES.... .......................................................................................... xiv BRIEF INTRODUCTION ...................................................................................... 1 Chapter 1. INTRODUCTION ................................................................................ 8 1.1. Background of Luminescence .............................................................. 8 1.1.1. Luminescence .......................................................................................... 8 1.1.2. Optical quenching .................................................................................... 9 1.1.3. Electroluminescence................................................................................ 9 1.1.4. Thermoluminescence ............................................................................ 10 1.2. Background of Transition Metal (TM) ions in the crystal field10 1.2.1. Transition metals10 1.2.2. The effect of crystal fields on the separation of TM ions 11 1.2.3. Tanabe-Sugano diagrams ...................................................................... 15 1.2.4. Energy levels of Mn2+ ion in a crystal field .......................................... 18 1.2.5. Energy levels of Cr3+ ion in a crystal field ............................................ 20 1.3. Literature review of transition metal (Mn2+, Cr3+) doped Zn2SiO4 and Zn2SnO4 phosphors ....................................................................................22 1.3.1. Structure and optical properties of Zn2SiO4: Mn2+.. 22 1.3.2. Structure and optical properties of Zn2SnO4, Zn2SnO4:Mn2+ 24 1.4. Phosphor-based LEDs ........................................................................26 1.4.1. LED ....................................................................................................... 26 1.4.2. Phosphor-based LEDs ........................................................................... 27 1.4.3. LED application in agricultural lighting ............................................... 30 Chapter 2. EXPERIMENTAL TECHNICS ......................................................... 32 2.1. Introduction .......................................................................................32 2.2. Synthesis of Zn2SiO4, Zn2SiO4:Mn2+, Zn2SnO4, Zn2SnO4:Mn2+, Zn2SnO4:Cr3+, Zn2SnO4:Cr3+, Al3+ ..............................................................33 2.2.1. Materials ................................................................................................. 33 2.2.2. Synthesis of Zn2SiO4 .............................................................................. 33 2.2.3. Synthesis of Zn2SiO4: Mn2+ ................................................................... 34 2.2.4. Synthesis of Zn2SnO4 ............................................................................. 34 2.2.5. Synthesis of Zn2SnO4:Mn2+ ................................................................... 34 2.2.6. Synthesis of Zn2SnO4:Cr3+ and Zn2SnO4:Cr3+, Al3+ .............................. 34 2.2.7. Mechanical milling ................................................................................. 35 iv 2.3. Techincal methods .............................................................................35 2.3.1. Structural characterisation ..................................................................... 35 2.3.2. Photoluminescent characterization ........................................................ 30 2.4. LED package process .........................................................................43 2.4.1. Die bonding ........................................................................................... 44 2.4.2. Wire Bonding ........................................................................................ 45 2.4.3. Phosphor Dosing ................................................................................... 45 2.4.4. Dispensing ............................................................................................. 46 2.4.5. Curing .................................................................................................... 47 2.4.6. Testing ................................................................................................... 47 Chapter 3. STRUCTURE AND OPTICAL PROPERTIES OF Zn2SiO4 AND Zn2SiO4:Mn2+ PHOSPHORS ................................................................................ 48 3.1. Introduction .......................................................................................48 3.2. Structure and optical properties of Zn2SiO4 phosphors ........................49 3.2.1. X-ray diffraction of Zn2SiO4 ................................................................. 49 3.2.2. Phosphor morphology of Zn2SiO4 ........................................................ 50 3.2.3. Vibrational analysis: Raman spectra of Zn2SiO4 .................................. 51 3.3. Structure and optical properties of Zn2SiO4:Mn2+ phosphors ...............55 3.3.1. X-ray diffraction of Zn2SiO4:Mn2+ ....................................................... 55 3.3.2. Phosphor morphology of Zn2SiO4:Mn2+ ............................................... 57 3.3.3. Vibrational analysis of Zn2SiO4:Mn2+ ................................................... 58 3.3.4. Optical properties of Zn2SiO4:Mn2+ ...................................................... 61 3.3.5. Thermoluminescence (TL) properties and Decay time of Mn2+ doped Zn2SiO4 ............................................................................................................. 64 3.3.6. Application of Mn2+ doped Zn2SiO4 on UV LED................................. 66 3.4. Conclusion .........................................................................................67 Chapter 4. STRUCTURE AND OPTICAL PROPERTIES OF Zn2SnO4 AND Zn2SnO4:Mn2+ PHOSPHORS ............................................................................... 68 4.1. Introduction .......................................................................................68 4.2. Structural and optical properties of Zn2SnO4 phosphors ......................69 4.2.1. X-ray diffraction of Zn2SnO4 ................................................................ 69 4.2.2. Optical properties of Zn2SnO4 .............................................................. 74 4.3. Structural and optical properties of Zn2SnO4:Mn2+ .............................80 4.3.1. X-ray diffraction of Zn2SnO4:Mn2+ ....................................................... 80 4.3.2. Phosphor morphology of Zn2SnO4:Mn2+ .............................................. 84 4.3.3. Optical properties of Zn2SnO4:Mn2+ ..................................................... 84 v 4.3.4. Decay time of 5%Mn2+ doped Zn2SnO4 ............................................... 89 4.3.5. Temperature-dependent PL and internal quantum efficiency of Zn2SnO4:5%Mn2+ phosphors ........................................................................... 91 4.3.6. Application of un-doped and Mn2+ doped Zn2SnO4 on LED ............... 92 4.4. Conclusion .........................................................................................93 Chapter 5. OPTICAL PROPERTIES OF Zn2SnO4:Cr3+ AND Zn2SnO4:Cr3+, Al3+ FOR PLANT CULTIVATION LED.................................................................... 95 5.1. Introduction .......................................................................................95 5.2. Structural and optical properties of Zn2SnO4:Cr3+ phosphors ..............97 5.2.1. X-ray diffraction of Zn2SnO4:Cr3+ ........................................................ 97 5.2.2. Phosphor morphology of Zn2SnO4:Cr3+ .............................................. 100 5.2.3. Optical properties of Zn2SnO4:Cr3+ ..................................................... 101 5.2.4. Application of the prepared phosphor for fabricating infrared LEDs . 105 5.3. Structural and optical properties of Zn2SnO4:Cr3+, Al3+ phosphors 106 5.3.1. X-ray diffraction and FESEM of Zn2SnO4:Cr3+,Al3+ .......................... 106 5.3.2. Crystal field analysis ........................................................................... 109 5.3.3. The effect of Al3+ on optical properties of ZTO: Cr3+ ........................ 111 5.3.4. Application of the prepared phosphor ................................................. 116 5.4. Conclusion ....................................................................................... 117 CONCLUSIONS AND FUTURE WORKS ...................................................... 120 PUBLICATIONS ............................................................................................... 123 RELATED PUBLICATIONS ............................................................................ 124 REFERENCES ................................................................................................... 125 vi LIST OF ACRONYMS Acronyms Full name EDX/EDS: Energy-Dispersive X-ray spectroscopy LED: Light Emitting Diode NIR: Near-infrared PL: Photoluminescence SEM: Scanning Electron Microscope XRD: X-Ray Diffraction FESEM: Field emission scanning electron Microscope PLE: Photoluminescence excitation UV: Ultraviolet HWHM: Half-Width at half-maximum IR: Infra-red TM: Transition Metal EL: Electroluminescence NBOH: Non – bridging oxygen hole centers RGB: Red, Green and Blue FTIR: Fourier – transform infrared spectroscopy HEBM: High – energy planetary ball mill AIST: Advanced Institute for Science and Technology JCPDS: Joint committee on powder diffraction standards FWHM: Full width at half maximum vii Zni: Zinc interstitials Sni: Tin interstitials Oi: Oxygen interstitials Vo: Oxygen vacancy WBG: Wide band gap ZTO: Zinc stannate VZn: Zinc vacancy VSn: Tin vacancy TG-DTA: Thermogravimetry/Different thermal analyzer CRI: Color rendering index CCT: Correlated color temperature BM: Brurstein – Moss WLED White light-emitting diode QE Quantum efficiency AO Atomic orbitals viii LIST OF FIGURES No. Name Page Figure 1.1 Shapes of d orbitals and ligand positions ○: Ligands for octahedral symmetry: Ligands for tetrahedral symmetry 11 Figure 1.2 The separation of AO d of the transition metal ions in octagonal symmetry 12 Figure 1.3 The separation of AO d of the central ion by the crystal field in different symmetry 13 Figure 1.4 The separation of energy levels of some transition metal ions due to electrostatic interaction (a) and the energy level separation of Cr3+ ions when take into account the spin-orbit interaction L-S (with B = 918 cm-1) (b) 14 Figure 1.5 3d level splitting caused by the crystal field 15 Figure 1.6 Energy level diagram for the d2 configuration. (From Kamimura, H., Sugano, S., and Tanabe, Y., Ligand Field Theory and its Applications, Syokabo, Tokyo, 1969 (in Japanese) 16 Figure 1.7 Energy level diagram for the d3 configuration. (From Kamimura, H., Sugano, S., and Tanabe, Y., Ligand Field Theory and its Applications, Syokabo, Tokyo, 1969 (in Japanese) 17 Figure 1.8 Energy level diagram for the d5 configuration. (From Kamimura, H., Sugano, S., and Tanabe, Y., Ligand Field Theory and its Applications, Syokabo, Tokyo, 1969 (in Japanese) 17 Figure 1.9 Tanabe–Sugano diagram for the Mn2+ in Zn2SiO4 crystal field 19 Figure 1.10 Tanabe–Sugano diagram for the Cr3+ electron configuration in the octahedral crystal field. C/B = 4.7 21 Figure 1.11 (a) The number of SiO4− units that are connected together by sharing the oxygen atoms and (b) Structure of the Willemite -Zn2SiO4 23 Figure 1.12 Structural models for the cubic spinel -Zn2SnO4 25 Figure 1.13 General approaches for achieving white LEDs. (A) Single-emitting-layer st ... ne, C. J. Raj, and S. J. Das, (2013), “Hydrothermal synthesis of highly crystalline Zn2SnO4 nanoflowers and their optical properties,” J. Alloys Compd., vol. 577, pp. 131–137. [177] M. A. Alpuche-Aviles and Y. Wu, (2009), “Photoelectrochemical Study of the Band Structure of Zn2Sn4 Prepared by the Hydrothermal Method,” J. Am. Chem. Soc., vol. 131, no. 9, pp. 3216–3224. [178] K. Y. Hongliang Zhu, Deren Yang, Guixia Yu, Hui Zhang, Dalai Jin, (2010), “Hydrothermal Synthesis of Zn2SnO4 Nanorods in the Diameter Regime of Sub5 nm and Their Properties,” pp. 7631–7634. [179] A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, (2000), “Identification of the transition responsible for the visible emission in ZnO using quantum size effects,” J. Lumin., vol. 90, no. 3–4, pp. 123–128. [180] N. S. Pesika, K. J. Stebe, and P. C. Searson, (2003), “Relationship between Absorbance Spectra and Particle Size Distributions for Quantum-Sized Nanocrystals,” J. Phys. Chem. B, vol. 107, no. 38, pp. 10412–10415. [181] Y. Zhao, L. Hu, H. Liu, M. Liao, X. Fang, and L. Wu, (2014), “Band gap tunable Zn2SnO4 nanocubes through thermal effect and their outstanding 137 ultraviolet light photoresponse,” Sci. Rep., vol. 4, pp. 1–7. [182] M. Miyauchi, Z. Liu, Z. G. Zhao, S. Anandan, and K. Hara, (2010), “Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices,” Chem. Commun., vol. 46, no. 9, pp. 1529–1531. [183] M. G. Varnamkhasti, H. R. Fallah, and M. Zadsar, (2012), “Effect of heat treatment on characteristics of nanocrystalline ZnO films by electron beam evaporation,” Vacuum, vol. 86, no. 7, pp. 871–875. [184] M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglu, (2009), “Electrical conductivity and optical properties of ZnO nanostructured thin film,” Appl. Surf. Sci., vol. 255, no. 8, pp. 4491–4496. [185] R. Dridi, I. Saafi, A. Mhamdi, A. Matri, A. Yumak, M. Haj Lakhdar, A. Amlouk, K. Boubaker, M. Amlouk, (2015), “Structural, optical and AC conductivity studies on alloy ZnO-Zn2SnO4(ZnO-ZTO) thin films,” J. Alloys Compd., vol. 634, pp. 179–186. [186] K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, and L. El Mir, (2014), “Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol-gel method,” Microelectron. Eng., vol. 128, pp. 53–58. [187] Zhu, B. L., Sun, X. H., Guo, S. S., Zhao, X. Z., Wu, J., Wu, R., & Liu, J., (2006), “Effect of thickness on the structure and properties of ZnO thin films prepared by pulsed laser deposition,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 45, no. 10 A, pp. 7860–7865. [188] Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X.,Dai, Y., (2012), “Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO,” ACS Appl. Mater. Interfaces, vol. 4, no. 8, pp. 4024–4030. [189] Tu, Y., Chen, S., Li, X., Gorbaciova, J., Gillin, W. P., Krause, S., & Briscoe, J., (2018), “Control of oxygen vacancies in ZnO nanorods by annealing and their influence on ZnO/PEDOT:PSS diode behaviour,” J. Mater. Chem. C, vol. 6, no. 7, pp. 1815–1821. [190] K. Wang, Y. Chang, L. Lv, and Y. Long, (2015), “Effect of annealing temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film,” Appl. Surf. Sci., vol. 351, pp. 164–168. [191] N. Salah, (2011), “High-energy ball milling technique for ZnO nanoparticles as antibacterial material.,” Int. J. Nanomedicine, vol. 6, pp. 863–869. [192] N. Tu, K. T. Nguyen, D. Q. Trung, N. T. Tuan, V. N. Do, and P. T. Huy, (2016), “Effects of carbon on optical properties of ZnO powder,” J. Lumin., vol. 174, pp. 6–10. [193] H. D. Alamdari, S. Boily, M. Blouin, A. Van Neste, and R. Schulz, (2000), “High energy ball milled nanocrystalline ZnO varistors,” Mater. Sci. Forum, 138 vol. 343, pp. 909–917. [194] Tu, N., Van Bui, H., Trung, D. Q., Duong, A.-T., Thuy, D. M., Nguyen, D. H., Huy, P. T., (2019), “Surface oxygen vacancies of ZnO: A facile fabrication method and their contribution to the photoluminescence,” J. Alloys Compd., vol. 791, pp. 722–729. [195] Thanh Le, D. T., Trung, D. D., Chinh, N. D., Thanh Binh, B. T., Hong, H. S., Van Duy, N., Van Hieu, N., (2013), “Facile synthesis of SnO2-ZnO core-shell nanowires for enhanced ethanol-sensing performance,” Curr. Appl. Phys., vol. 13, no. 8, pp. 1637–1642. [196] X. Shen, J. Shen, S.J. You, L.X. Yang, (2009), “Phase transition of Zn2SnO4 nanowires under high pressure’’, J. Appl. Phys., vol. 106, 113523. [197] S Bao, S., Wu, J., He, X., Tu, Y., Wang, S., Huang, M., & Lan, Z., (2017), “Mesoporous Zn2SnO4 as effective electron transport materials for high- performance perovskite solar cells,” Electrochim. Acta, vol. 251, pp. 307–315. [198] T. Lim, H. Kim, M. Meyyappan, and S. Ju, (2012), “Photostable Zn2SnO4 nanowire transistors for transparent displays,” ACS Nano, vol. 6, no. 6, pp. 4912–4920. [199] S. B. Zhang, S.-H. Wei, and A. Zunger, (2001), “Intrinsic n -type versus p - type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B, vol. 63, no. 7, p. 075205. [200] Van Dijken, A., Meulenkamp, E., Vanmaekelbergh, D., & Meijerink, A, (2000), “The luminescence of nanocrystalline ZnO particles: the mechanism of the ultraviolet and visible emission,” J. Lumin., vol. 89, pp. 454–456. [201] M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, and T. Srećković, (2011), “Defect induced variation in vibrational and optoelectronic properties of nanocrystalline ZnO powders,” J. Appl. Phys., vol. 109, no. 3, p. 034313. [202] C. Mrabet, R. Dridi, N. Mahdhi, and M. Amlouk, (2017), “Mechanism of wettability conversion on sprayed Zn2SnO4 thin films surfaces modified by thermal annealing in air,” J. Alloys Compd., vol. 725, pp. 765–772. [203] R. Dridi, C. Mrabet, A. Labidi, N. Mahdhi, A. Amlouk, and M. Amlouk, (2017), “Electrical conductivity of Zn2SnO4 thin films along with wettability and EtOH-sensing,” J. Alloys Compd. [204] J. Tauc, (1968), “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull., vol. 3, no. 1, pp. 37–46. [205] P. Pyykkö, (1999), “Theory of Intermolecular Interactions,” in Crystal Engineering: From Molecules and Crystals to Materials, 1999, pp. 79–88. [206] L. N. Liem and N. Tran, (2018), “ Calculations of the Racah parameter B for Mn4+ and Mn2+ ions doped in CaAl2O4 ,” IOP Conf. Ser. Mater. Sci. Eng., vol. 343, p. 012026. 139 [207] H. Yamamoto, (2006), “Principal phosphor materials and their optical properties,” in Phosphor Handbook, Second Edition, vol. 1, 2006, pp. 231– 245. [208] V. Singh, R. P. S. Chakradhar, J. L. Rao, and Y. Jho, (2012), “EPR and photoluminescence properties of green light emitting LaAl11O18: Mn2+ phosphors,” Phys. B Phys. Condens. Matter, vol. 407, no. 12, pp. 2289–2294. [209] JiaJia Nia, Qian Liu, Jieqiong Wana, Guanghui Liua, Zhenzhen Zhoua, Fangfang, (2018), “Novel Luminescent Properties and Thermal Stability of Non-Rare-Earth Ca-α-Sialon: Mn2+ Phosphor”, J. Lumin., vol. 89, pp. 454– 456. [210] Bo Wang, Youchao Kong, Zikun Chen, Xiaoshuang Li, Shuangpeng Wang, Qingguang Zeng, (2019) “Thermal stability and photoluminescence of Mn2+ activated green-emitting feldspar phosphor SrAl2Si2O8: Mn2+ for wide gamut w-LED backlight”, Optical materials, vol. 98, no. 9, pp. 371–375. [211] Enhai Song, Xingxing Jiang, Yayun Zhou, Zheshuai Lin, Shi Ye, Zhiguo Xia, and Qinyuan Zhang, (2019), “Heavy Mn2+ doped MgAl2O4 Phosphor for High- Efficient Near-Infrared Light-Emitting Diode and the Night-Vision Application”, Adv. Optical Mater, vol. 179, pp. 1035–1041. [212] K. Sankarasubramanian, B. Devakumar, G. Annadurai, L. Sun, Y. J. Zeng, and X. Huang, (2018), “Novel SrLaAlO4:Mn4+ deep-red emitting phosphors with excellent responsiveness to phytochrome PFR for plant cultivation LEDs: Synthesis, photoluminescence properties, and thermal stability,” RSC Adv., vol. 8, no. 53, pp. 30223–30229. [213] Y. Chen, Q. Wang, Z. Mu, J. Feng, D. Zhu, and F. Wu, (2019), “Bi3+ and Mn4+ co-doped La2MgGeO6 blue-red tunable emission phosphors based on energy transfer for agricultural applications,” Optik (Stuttg)., vol. 179, no. November 2018, pp. 1035–1041. [214] X. Huang and H. Guo, (2018), “Dyes and Pigments Finding a novel highly efficient Mn4+ -activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application,” Dye. Pigment., vol. 152, no. January, pp. 36–42. [215] L. Li, Y. Pan, Y. Huang, S. Huang, and M. Wu, (2017), “Dual-emissions with energy transfer from the phosphor Ca14Al10Zn6O35:Bi3+,Eu3+ for application in agricultural lighting,” J. Alloys Compd., vol. 724, pp. 735–743. [216] J. Chen, C. Guo, Z. Yang, T. Li, and J. Zhao, (2016), “Li2SrSiO4:Ce3+, Pr3+ Phosphor with Blue, Red, and Near-Infrared Emissions Used for Plant Growth LED,” J. Am. Ceram. Soc., vol. 99, no. 1, pp. 218–225. [217] Jiayu Chen, Niumiao Zhang, Chongfeng Guo, Fengjuan Pan, Xianju Zhou, Hao Suo, Xiaoqi Zhao, and Ewa M. Goldys, (2016), “Site-Dependent Luminescence 140 and Thermal Stability of Eu2+ Doped Fluorophosphate toward White LEDs for Plant Growth,” ACS Appl. Mater. Interfaces, vol. 8, no. 32, pp. 20856–20864. [218] T. Hu, H. Lin, J. Xu, B. Wang, J. Wang, and Y. Wang, (2017), “Color-tunable persistent luminescence in oxyfluoride glass and glass ceramic containing Mn2+:α-Zn2SiO4 nanocrystals,” J. Mater. Chem. C, vol. 5, no. 6, pp. 1479– 1487. [219] Zhou, Ziwei Zheng, Jiming Shi, Rui Zhang, Niumiao Chen, Jiayu Zhang, Ruoyu Suo, Hao Goldys, Ewa M. Guo, Chongfeng, (2017), “Ab Initio Site Occupancy and Far-Red Emission of Mn4+ in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation,” ACS Appl. Mater. Interfaces, vol. 9, no. 7, pp. 6177–6185. [220] Sun, L., Devakumar, B., Guo, H., Liang, J., Li, B., Wang, S., Huang, X, (2018), “Synthesis, structure, and luminescence characteristics of far-red emitting Mn4+-activated LaScO3 perovskite phosphors for plant growth,” RSC Adv., vol. 8, no. 58, pp. 33035–33041. [221] K. Park, H. Kim, and D. A. Hakeem, (2017), “Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca,Sr)2Al2SiO7:Eu3+ phosphors,” Dye. Pigment., vol. 136, pp. 70–77. [222] X. Huang, B. Li, H. Guo, and D. Chen, (2017), “Molybdenum-doping-induced photoluminescence enhancement in Eu3+-activated CaWO4 red-emitting phosphors for white light-emitting diodes,” Dye. Pigment., vol. 143, pp. 86– 94. [223] S. Tamboli, D. I. Shahare, and S. J. Dhoble, (2018), “Luminescence properties of Na2Sr2Al2PO4Cl9:Sm3+phosphor,” Phys. B Condens. Matter, vol. 535, pp. 157–161. [224] X. Huang and H. Guo, (2018), “A novel highly efficient single-composition tunable white-light-emitting LiCa3MgV3O12:Eu3+ phosphor,” Dye. Pigment., vol. 154, no. February, pp. 82–86. [225] H. Guo and X. Huang, (2018), “Low-temperature solid-state synthesis and photoluminescence properties of novel high-brightness and thermal-stable Eu3+-activated Na2Lu(MoO4)(PO4) red-emitting phosphors for near-UV- excited white LEDs,” J. Alloys Compd., vol. 764, pp. 809–814. [226] Liang, J., Devakumar, B., Sun, L., Sun, Q., Wang, S., Li, B.,Huang, X., (2019), “Mn4+-activated KLaMgWO6: A new high-efficiency far-red phosphor for indoor plant growth LEDs,” Ceram. Int., vol. 45, no. 4, pp. 4564–4569. [227] X. Gu, Z. He, and X. Y. Sun, (2018), “The deep red emission of Mn4+ doped SrLaMgNbO6 flower-like microsphere phosphors,” Chem. Phys. Lett., vol. 707, pp. 129–132. [228] Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang, and J. Jiang, (2018), “Photoluminescence properties of a ScBO3:Cr3+ phosphor and its applications 141 for broadband near-infrared LEDs,” RSC Adv., vol. 8, no. 22, pp. 12035– 12042. [229] S. Zhang, Y. Hu, L. Chen, Y. Fu, and G. Ju, (2016), “persistent luminescence,” vol. 6, no. 100, pp. 8638–8645. [230] P. P. Das, A. Roy, S. Agarkar, and P. S. Devi, (2018), “Hydrothermally synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells,” Dye. Pigment., vol. 154, pp. 303–313. [231] M. J. Weber and T. E. Varitimos, (1974), “Optical spectra and relaxation of Cr3+ions in YAlO3,” J. Appl. Phys., vol. 45, no. 2, pp. 810–816. [232] Y. Katayama, H. Kobayashi, J. Ueda, B. Viana, and S. Tanabe, (2016), “Persistent luminescence properties of Cr3+-Sm3+ activated LaAlO3 perovskite,” Opt. Mater. Express, vol. 6, no. 5, p. 1500. [233] Y. Zhuang, J. Ueda, and S. Tanabe, (2013), “Tunable trap depth in Zn(Ga1- xAlx)2O4:Cr,Bi red persistent phosphors: Considerations of high-temperature persistent luminescence and photostimulated persistent luminescence,” J. Mater. Chem. C, vol. 1, no. 47, pp. 7849–7855. [234] Meng, X., Wang, Z., Qiu, K., Li, Y., Liu, J., Wang, Z.,Li, P., (2018), “Design of a Novel Near-Infrared Phosphor by Controlling the Cationic Coordination Environment,” Cryst. Growth Des., vol. 18, no. 8, pp. 4691–4700. [235] D. Jaque and J. Garc, (2000), “Up-conversion luminescence in the Ca3Ga2Ge3O12: Nd3+ laser,” vol. 12. [236] A. R. Denton and N. W. Ashcroft, (1991), “Vegards law,” Phys. Rev. A, vol. 43, no. 6, pp. 3161–3164. [237] Jeon, J.-W., Jeon, D.-W., Sahoo, T., Kim, M., Baek, J.-H., Hoffman, J. L.,Lee, I.-H., (2011), “Effect of annealing temperature on optical band-gap of amorphous indium zinc oxide film,” J. Alloys Compd., vol. 509, no. 41, pp. 10062–10065. [238] Y. Dou, T. Fishlock, R. Egdell, D. Law, and G. Beamson, (1997), “Band-gap shrinkage in n-type-doped CdO probed by photoemission spectroscopy,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 55, no. 20, pp. R13381–R13384. [239] Shin, S. S., Yang, W. S., Noh, J. H., Suk, J. H., Jeon, N. J., Park, J. H., Seok, S. I., (2015), “High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100°C,” Nat. Commun., vol. 6, no. May, pp. 1–8. [240] W. C. Wang, Q. H. Le, Q. Y. Zhang, and L. Wondraczek, (2017), “Fluoride- sulfophosphate glasses as hosts for broadband optical amplification through transition metal activators,” J. Mater. Chem. C, vol. 5, no. 31, pp. 7969–7976. [241] J. Zhou and Z. Xia, (2014), “Synthesis and near-infrared luminescence of La3GaGe5O16:Cr3+ phosphors,” RSC Adv., vol. 4, no. 86, pp. 46313–46318. 142 [242] B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, (2014), “Storage of Visible Light for Long-Lasting Phosphorescence in Chromium-Doped Zinc Gallate,” Chem. Mater., vol. 26, pp. 1365–1373. [243] Y. Zhuang, J. Ueda, and S. Tanabe, (1882), “Enhancement of Red Persistent Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping,” vol. 052602, pp. 2–6.
File đính kèm:
- synthesis_and_properties_of_undoped_and_transition_metal_mn2.pdf
- thong tin mới luận án - tiếng Anh.pdf
- thong tin mới luận án- Tiếng Việt.pdf
- Tom tat LA Tieng Anh-Le Thi Thao Vien-2020.pdf
- Tom tat LA -tiếng việt-Lê Thị Thảo Viễn.pdf