Synthesis and properties of undoped and transition metal (Mn2+, Cr3+) doped Zn2Sio4 and zn2snO4 phosphors

Although my name is on the cover of this dissertation, many people were of

great importance to this research. I want to take a moment to extend my gratitude to

the involved.

The first, I would like to express my sincerest thanks to my supervisor, Prof.

Pham Thanh Huy, excellence and estimable teacher, for all of his supports. His

dedication to science has been encouraging me so much, protected me from the

confusion since I started studying and researching at the Advanced Institute for

Science Technology (AIST).

This dissertation was carried out at AIST, together with several research groups

researches. I had garnered variable information from these seminars with free

discussions coming from all of our group members. Possibly just as important as the

practical aid was the friendly, cooperative atmosphere at AIST; it made me enjoy

virtually every second of working on my dissertation. I wish to thank Associate prof.

Dao Xuan Viet; Dr. Nguyen Tu; Dr. Nguyen Duy Hung, and all of my teammates for

their friendships with kind-hearts and unconditional assistance.

The last few months weren’t easy, and I want to thank all my dearest friends,

who helped me get back on track when I lost my laptop and found many difficulties

in life. Without your care, understanding, and motivational speeches, this thesis

would no doubt look different and not for the better. Your friendship makes me

realize what a lucky person I am.

For the last, more than I can say, I would like to express manifest thanks to my

husband and two children for always being by my side, putting their truth in me

during my duration at AIST

pdf 160 trang dienloan 14520
Bạn đang xem 20 trang mẫu của tài liệu "Synthesis and properties of undoped and transition metal (Mn2+, Cr3+) doped Zn2Sio4 and zn2snO4 phosphors", để tải tài liệu gốc về máy hãy click vào nút Download ở trên

Tóm tắt nội dung tài liệu: Synthesis and properties of undoped and transition metal (Mn2+, Cr3+) doped Zn2Sio4 and zn2snO4 phosphors

Synthesis and properties of undoped and transition metal (Mn2+, Cr3+) doped Zn2Sio4 and zn2snO4 phosphors
MINISTRY OF EDUCATION AND TRAINING 
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY 
LE THI THAO VIEN 
Synthesis and properties of undoped and transition 
metal (Mn2+, Cr3+) doped Zn2SiO4 
 and Zn2SnO4 phosphors 
DOCTORAL DISSERTATION ON MATERIAL SCIENCES 
HANOI – 2020 
MINISTRY OF EDUCATION AND TRAINING 
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY 
LE THI THAO VIEN 
Synthesis and properties of undoped and transition 
metal (Mn2+, Cr3+) doped Zn2SiO4 
 and Zn2SnO4 phosphors 
 Majors: Material Sciences 
 Code: 9440122 
DOCTORAL DISSERTATION ON MATERIAL SCIENCES 
 ADVISORS: 
1. Prof. Dr. PHAM THANH HUY 
2. Dr. NGUYEN THI KHOI 
HANOI – 2020 
 i 
COPYRIGHT DECLARATION 
This thesis compresses only my research results. It does not contain any previous 
data submitted by any people or organizations except that have been marked in the 
references. 
 Hanoi, 15/9/2020 
 Advisors PhD. Student 
Prof. Dr. Pham Thanh Huy Le Thi Thao Vien 
 ii 
ACKNOWLEDGEMENTS 
Although my name is on the cover of this dissertation, many people were of 
great importance to this research. I want to take a moment to extend my gratitude to 
the involved. 
The first, I would like to express my sincerest thanks to my supervisor, Prof. 
Pham Thanh Huy, excellence and estimable teacher, for all of his supports. His 
dedication to science has been encouraging me so much, protected me from the 
confusion since I started studying and researching at the Advanced Institute for 
Science Technology (AIST). 
This dissertation was carried out at AIST, together with several research groups 
researches. I had garnered variable information from these seminars with free 
discussions coming from all of our group members. Possibly just as important as the 
practical aid was the friendly, cooperative atmosphere at AIST; it made me enjoy 
virtually every second of working on my dissertation. I wish to thank Associate prof. 
Dao Xuan Viet; Dr. Nguyen Tu; Dr. Nguyen Duy Hung, and all of my teammates for 
their friendships with kind-hearts and unconditional assistance. 
The last few months weren’t easy, and I want to thank all my dearest friends, 
who helped me get back on track when I lost my laptop and found many difficulties 
in life. Without your care, understanding, and motivational speeches, this thesis 
would no doubt look different and not for the better. Your friendship makes me 
realize what a lucky person I am. 
For the last, more than I can say, I would like to express manifest thanks to my 
husband and two children for always being by my side, putting their truth in me 
during my duration at AIST. 
Lastly, I want to mention my father, mother, my parents-in-law, and two sisters, 
and thank them for making me the person that I have become. 
 Le Thi Thao Vien 
 iii 
CONTENTS 
LIST OF FIGURES ............................................................................................. viii 
LIST OF TABLES.... .......................................................................................... xiv 
BRIEF INTRODUCTION ...................................................................................... 1 
Chapter 1. INTRODUCTION ................................................................................ 8 
1.1. Background of Luminescence .............................................................. 8 
1.1.1. Luminescence .......................................................................................... 8 
1.1.2. Optical quenching .................................................................................... 9 
1.1.3. Electroluminescence................................................................................ 9 
1.1.4. Thermoluminescence ............................................................................ 10 
1.2. Background of Transition Metal (TM) ions in the crystal field10 
1.2.1. Transition metals10 
1.2.2. The effect of crystal fields on the separation of TM ions 11 
1.2.3. Tanabe-Sugano diagrams ...................................................................... 15 
1.2.4. Energy levels of Mn2+ ion in a crystal field .......................................... 18 
1.2.5. Energy levels of Cr3+ ion in a crystal field ............................................ 20 
1.3. Literature review of transition metal (Mn2+, Cr3+) doped Zn2SiO4 and 
Zn2SnO4 phosphors ....................................................................................22 
1.3.1. Structure and optical properties of Zn2SiO4: Mn2+.. 22 
1.3.2. Structure and optical properties of Zn2SnO4, Zn2SnO4:Mn2+ 
 24 
1.4. Phosphor-based LEDs ........................................................................26 
1.4.1. LED ....................................................................................................... 26 
1.4.2. Phosphor-based LEDs ........................................................................... 27 
1.4.3. LED application in agricultural lighting ............................................... 30 
Chapter 2. EXPERIMENTAL TECHNICS ......................................................... 32 
2.1. Introduction .......................................................................................32 
2.2. Synthesis of Zn2SiO4, Zn2SiO4:Mn2+, Zn2SnO4, Zn2SnO4:Mn2+, 
Zn2SnO4:Cr3+, Zn2SnO4:Cr3+, Al3+ ..............................................................33 
2.2.1. Materials ................................................................................................. 33 
2.2.2. Synthesis of Zn2SiO4 .............................................................................. 33 
2.2.3. Synthesis of Zn2SiO4: Mn2+ ................................................................... 34 
2.2.4. Synthesis of Zn2SnO4 ............................................................................. 34 
2.2.5. Synthesis of Zn2SnO4:Mn2+ ................................................................... 34 
2.2.6. Synthesis of Zn2SnO4:Cr3+ and Zn2SnO4:Cr3+, Al3+ .............................. 34 
2.2.7. Mechanical milling ................................................................................. 35 
 iv 
2.3. Techincal methods .............................................................................35 
2.3.1. Structural characterisation ..................................................................... 35 
2.3.2. Photoluminescent characterization ........................................................ 30 
2.4. LED package process .........................................................................43 
2.4.1. Die bonding ........................................................................................... 44 
2.4.2. Wire Bonding ........................................................................................ 45 
2.4.3. Phosphor Dosing ................................................................................... 45 
2.4.4. Dispensing ............................................................................................. 46 
2.4.5. Curing .................................................................................................... 47 
2.4.6. Testing ................................................................................................... 47 
Chapter 3. STRUCTURE AND OPTICAL PROPERTIES OF Zn2SiO4 AND 
Zn2SiO4:Mn2+ PHOSPHORS ................................................................................ 48 
3.1. Introduction .......................................................................................48 
3.2. Structure and optical properties of Zn2SiO4 phosphors ........................49 
3.2.1. X-ray diffraction of Zn2SiO4 ................................................................. 49 
3.2.2. Phosphor morphology of Zn2SiO4 ........................................................ 50 
3.2.3. Vibrational analysis: Raman spectra of Zn2SiO4 .................................. 51 
3.3. Structure and optical properties of Zn2SiO4:Mn2+ phosphors ...............55 
3.3.1. X-ray diffraction of Zn2SiO4:Mn2+ ....................................................... 55 
3.3.2. Phosphor morphology of Zn2SiO4:Mn2+ ............................................... 57 
3.3.3. Vibrational analysis of Zn2SiO4:Mn2+ ................................................... 58 
3.3.4. Optical properties of Zn2SiO4:Mn2+ ...................................................... 61 
3.3.5. Thermoluminescence (TL) properties and Decay time of Mn2+ doped 
Zn2SiO4 ............................................................................................................. 64 
3.3.6. Application of Mn2+ doped Zn2SiO4 on UV LED................................. 66 
3.4. Conclusion .........................................................................................67 
Chapter 4. STRUCTURE AND OPTICAL PROPERTIES OF Zn2SnO4 AND 
Zn2SnO4:Mn2+ PHOSPHORS ............................................................................... 68 
4.1. Introduction .......................................................................................68 
4.2. Structural and optical properties of Zn2SnO4 phosphors ......................69 
4.2.1. X-ray diffraction of Zn2SnO4 ................................................................ 69 
4.2.2. Optical properties of Zn2SnO4 .............................................................. 74 
4.3. Structural and optical properties of Zn2SnO4:Mn2+ .............................80 
4.3.1. X-ray diffraction of Zn2SnO4:Mn2+ ....................................................... 80 
4.3.2. Phosphor morphology of Zn2SnO4:Mn2+ .............................................. 84 
4.3.3. Optical properties of Zn2SnO4:Mn2+ ..................................................... 84 
 v 
4.3.4. Decay time of 5%Mn2+ doped Zn2SnO4 ............................................... 89 
4.3.5. Temperature-dependent PL and internal quantum efficiency of 
Zn2SnO4:5%Mn2+ phosphors ........................................................................... 91 
4.3.6. Application of un-doped and Mn2+ doped Zn2SnO4 on LED ............... 92 
4.4. Conclusion .........................................................................................93 
Chapter 5. OPTICAL PROPERTIES OF Zn2SnO4:Cr3+ AND Zn2SnO4:Cr3+, Al3+ 
FOR PLANT CULTIVATION LED.................................................................... 95 
5.1. Introduction .......................................................................................95 
5.2. Structural and optical properties of Zn2SnO4:Cr3+ phosphors ..............97 
5.2.1. X-ray diffraction of Zn2SnO4:Cr3+ ........................................................ 97 
5.2.2. Phosphor morphology of Zn2SnO4:Cr3+ .............................................. 100 
5.2.3. Optical properties of Zn2SnO4:Cr3+ ..................................................... 101 
5.2.4. Application of the prepared phosphor for fabricating infrared LEDs . 105 
5.3. Structural and optical properties of Zn2SnO4:Cr3+, Al3+ phosphors 106 
5.3.1. X-ray diffraction and FESEM of Zn2SnO4:Cr3+,Al3+ .......................... 106 
5.3.2. Crystal field analysis ........................................................................... 109 
5.3.3. The effect of Al3+ on optical properties of ZTO: Cr3+ ........................ 111 
5.3.4. Application of the prepared phosphor ................................................. 116 
5.4. Conclusion ....................................................................................... 117 
CONCLUSIONS AND FUTURE WORKS ...................................................... 120 
PUBLICATIONS ............................................................................................... 123 
RELATED PUBLICATIONS ............................................................................ 124 
REFERENCES ................................................................................................... 125 
 vi 
LIST OF ACRONYMS 
Acronyms Full name 
EDX/EDS: Energy-Dispersive X-ray spectroscopy 
LED: Light Emitting Diode 
NIR: Near-infrared 
PL: Photoluminescence 
SEM: Scanning Electron Microscope 
XRD: X-Ray Diffraction 
FESEM: Field emission scanning electron Microscope 
PLE: Photoluminescence excitation 
UV: Ultraviolet 
HWHM: Half-Width at half-maximum 
IR: Infra-red 
TM: Transition Metal 
EL: Electroluminescence 
NBOH: Non – bridging oxygen hole centers 
RGB: Red, Green and Blue 
FTIR: Fourier – transform infrared spectroscopy 
HEBM: High – energy planetary ball mill 
AIST: Advanced Institute for Science and Technology 
JCPDS: Joint committee on powder diffraction standards 
FWHM: Full width at half maximum 
 vii 
Zni: Zinc interstitials 
Sni: Tin interstitials 
Oi: Oxygen interstitials 
Vo: Oxygen vacancy 
WBG: Wide band gap 
ZTO: Zinc stannate 
VZn: Zinc vacancy 
VSn: Tin vacancy 
TG-DTA: Thermogravimetry/Different thermal analyzer 
CRI: Color rendering index 
CCT: Correlated color temperature 
BM: Brurstein – Moss 
WLED White light-emitting diode 
QE Quantum efficiency 
AO Atomic orbitals 
 viii 
LIST OF FIGURES 
No. Name Page 
Figure 1.1 
Shapes of d orbitals and ligand positions ○: Ligands for 
octahedral symmetry: Ligands for tetrahedral symmetry 
11 
Figure 1.2 
The separation of AO d of the transition metal ions in 
octagonal symmetry 
12 
Figure 1.3 
The separation of AO d of the central ion by the crystal 
field in different symmetry 
13 
Figure 1.4 
The separation of energy levels of some transition metal 
ions due to electrostatic interaction (a) and the energy 
level separation of Cr3+ ions when take into account the 
spin-orbit interaction L-S (with B = 918 cm-1) (b) 
14 
Figure 1.5 3d level splitting caused by the crystal field 15 
Figure 1.6 
Energy level diagram for the d2 configuration. (From 
Kamimura, H., Sugano, S., and Tanabe, Y., Ligand Field 
Theory and its Applications, Syokabo, Tokyo, 1969 (in 
Japanese) 
16 
Figure 1.7 
Energy level diagram for the d3 configuration. (From 
Kamimura, H., Sugano, S., and Tanabe, Y., Ligand Field 
Theory and its Applications, Syokabo, Tokyo, 1969 (in 
Japanese) 
17 
Figure 1.8 
Energy level diagram for the d5 configuration. (From 
Kamimura, H., Sugano, S., and Tanabe, Y., Ligand Field 
Theory and its Applications, Syokabo, Tokyo, 1969 (in 
Japanese) 
17 
Figure 1.9 
Tanabe–Sugano diagram for the Mn2+ in Zn2SiO4 crystal 
field 
19 
Figure 1.10 
Tanabe–Sugano diagram for the Cr3+ electron 
configuration in the octahedral crystal field. C/B = 4.7 
21 
Figure 1.11 
(a) The number of SiO4− units that are connected together 
by sharing the oxygen atoms and (b) Structure of the 
Willemite -Zn2SiO4 
23 
Figure 1.12 Structural models for the cubic spinel -Zn2SnO4 25 
Figure 1.13 
General approaches for achieving white LEDs. (A) 
Single-emitting-layer st ... ne, C. J. Raj, and S. J. Das, (2013), “Hydrothermal synthesis of 
highly crystalline Zn2SnO4 nanoflowers and their optical properties,” J. Alloys 
Compd., vol. 577, pp. 131–137. 
[177] M. A. Alpuche-Aviles and Y. Wu, (2009), “Photoelectrochemical Study of the 
Band Structure of Zn2Sn4 Prepared by the Hydrothermal Method,” J. Am. 
Chem. Soc., vol. 131, no. 9, pp. 3216–3224. 
[178] K. Y. Hongliang Zhu, Deren Yang, Guixia Yu, Hui Zhang, Dalai Jin, (2010), 
“Hydrothermal Synthesis of Zn2SnO4 Nanorods in the Diameter Regime of 
Sub5 nm and Their Properties,” pp. 7631–7634. 
[179] A. van Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, 
(2000), “Identification of the transition responsible for the visible emission in 
ZnO using quantum size effects,” J. Lumin., vol. 90, no. 3–4, pp. 123–128. 
[180] N. S. Pesika, K. J. Stebe, and P. C. Searson, (2003), “Relationship between 
Absorbance Spectra and Particle Size Distributions for Quantum-Sized 
Nanocrystals,” J. Phys. Chem. B, vol. 107, no. 38, pp. 10412–10415. 
[181] Y. Zhao, L. Hu, H. Liu, M. Liao, X. Fang, and L. Wu, (2014), “Band gap 
tunable Zn2SnO4 nanocubes through thermal effect and their outstanding 
 137 
ultraviolet light photoresponse,” Sci. Rep., vol. 4, pp. 1–7. 
[182] M. Miyauchi, Z. Liu, Z. G. Zhao, S. Anandan, and K. Hara, (2010), “Single 
crystalline zinc stannate nanoparticles for efficient photo-electrochemical 
devices,” Chem. Commun., vol. 46, no. 9, pp. 1529–1531. 
[183] M. G. Varnamkhasti, H. R. Fallah, and M. Zadsar, (2012), “Effect of heat 
treatment on characteristics of nanocrystalline ZnO films by electron beam 
evaporation,” Vacuum, vol. 86, no. 7, pp. 871–875. 
[184] M. Caglar, S. Ilican, Y. Caglar, and F. Yakuphanoglu, (2009), “Electrical 
conductivity and optical properties of ZnO nanostructured thin film,” Appl. 
Surf. Sci., vol. 255, no. 8, pp. 4491–4496. 
[185] R. Dridi, I. Saafi, A. Mhamdi, A. Matri, A. Yumak, M. Haj Lakhdar, A. 
Amlouk, K. Boubaker, M. Amlouk, (2015), “Structural, optical and AC 
conductivity studies on alloy ZnO-Zn2SnO4(ZnO-ZTO) thin films,” J. Alloys 
Compd., vol. 634, pp. 179–186. 
[186] K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, and L. El Mir, (2014), “Effects of 
temperature on the optical and electrical properties of ZnO nanoparticles 
synthesized by sol-gel method,” Microelectron. Eng., vol. 128, pp. 53–58. 
[187] Zhu, B. L., Sun, X. H., Guo, S. S., Zhao, X. Z., Wu, J., Wu, R., & Liu, J., 
(2006), “Effect of thickness on the structure and properties of ZnO thin films 
prepared by pulsed laser deposition,” Japanese J. Appl. Physics, Part 1 Regul. 
Pap. Short Notes Rev. Pap., vol. 45, no. 10 A, pp. 7860–7865. 
[188] Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X.,Dai, Y., (2012), 
“Oxygen vacancy induced band-gap narrowing and enhanced visible light 
photocatalytic activity of ZnO,” ACS Appl. Mater. Interfaces, vol. 4, no. 8, pp. 
4024–4030. 
[189] Tu, Y., Chen, S., Li, X., Gorbaciova, J., Gillin, W. P., Krause, S., & Briscoe, 
J., (2018), “Control of oxygen vacancies in ZnO nanorods by annealing and 
their influence on ZnO/PEDOT:PSS diode behaviour,” J. Mater. Chem. C, vol. 
6, no. 7, pp. 1815–1821. 
[190] K. Wang, Y. Chang, L. Lv, and Y. Long, (2015), “Effect of annealing 
temperature on oxygen vacancy concentrations of nanocrystalline CeO2 film,” 
Appl. Surf. Sci., vol. 351, pp. 164–168. 
[191] N. Salah, (2011), “High-energy ball milling technique for ZnO nanoparticles 
as antibacterial material.,” Int. J. Nanomedicine, vol. 6, pp. 863–869. 
[192] N. Tu, K. T. Nguyen, D. Q. Trung, N. T. Tuan, V. N. Do, and P. T. Huy, (2016), 
“Effects of carbon on optical properties of ZnO powder,” J. Lumin., vol. 174, 
pp. 6–10. 
[193] H. D. Alamdari, S. Boily, M. Blouin, A. Van Neste, and R. Schulz, (2000), 
“High energy ball milled nanocrystalline ZnO varistors,” Mater. Sci. Forum, 
 138 
vol. 343, pp. 909–917. 
[194] Tu, N., Van Bui, H., Trung, D. Q., Duong, A.-T., Thuy, D. M., Nguyen, D. H., 
Huy, P. T., (2019), “Surface oxygen vacancies of ZnO: A facile fabrication 
method and their contribution to the photoluminescence,” J. Alloys Compd., 
vol. 791, pp. 722–729. 
[195] Thanh Le, D. T., Trung, D. D., Chinh, N. D., Thanh Binh, B. T., Hong, H. S., 
Van Duy, N., Van Hieu, N., (2013), “Facile synthesis of SnO2-ZnO core-shell 
nanowires for enhanced ethanol-sensing performance,” Curr. Appl. Phys., vol. 
13, no. 8, pp. 1637–1642. 
[196] X. Shen, J. Shen, S.J. You, L.X. Yang, (2009), “Phase transition of Zn2SnO4 
nanowires under high pressure’’, J. Appl. Phys., vol. 106, 113523. 
[197] S Bao, S., Wu, J., He, X., Tu, Y., Wang, S., Huang, M., & Lan, Z., (2017), 
“Mesoporous Zn2SnO4 as effective electron transport materials for high-
performance perovskite solar cells,” Electrochim. Acta, vol. 251, pp. 307–315. 
[198] T. Lim, H. Kim, M. Meyyappan, and S. Ju, (2012), “Photostable Zn2SnO4 
nanowire transistors for transparent displays,” ACS Nano, vol. 6, no. 6, pp. 
4912–4920. 
[199] S. B. Zhang, S.-H. Wei, and A. Zunger, (2001), “Intrinsic n -type versus p -
type doping asymmetry and the defect physics of ZnO,” Phys. Rev. B, vol. 63, 
no. 7, p. 075205. 
[200] Van Dijken, A., Meulenkamp, E., Vanmaekelbergh, D., & Meijerink, A, 
(2000), “The luminescence of nanocrystalline ZnO particles: the mechanism of 
the ultraviolet and visible emission,” J. Lumin., vol. 89, pp. 454–456. 
[201] M. Šćepanović, M. Grujić-Brojčin, K. Vojisavljević, and T. Srećković, (2011), 
“Defect induced variation in vibrational and optoelectronic properties of 
nanocrystalline ZnO powders,” J. Appl. Phys., vol. 109, no. 3, p. 034313. 
[202] C. Mrabet, R. Dridi, N. Mahdhi, and M. Amlouk, (2017), “Mechanism of 
wettability conversion on sprayed Zn2SnO4 thin films surfaces modified by 
thermal annealing in air,” J. Alloys Compd., vol. 725, pp. 765–772. 
[203] R. Dridi, C. Mrabet, A. Labidi, N. Mahdhi, A. Amlouk, and M. Amlouk, 
(2017), “Electrical conductivity of Zn2SnO4 thin films along with wettability 
and EtOH-sensing,” J. Alloys Compd. 
[204] J. Tauc, (1968), “Optical properties and electronic structure of amorphous Ge 
and Si,” Mater. Res. Bull., vol. 3, no. 1, pp. 37–46. 
[205] P. Pyykkö, (1999), “Theory of Intermolecular Interactions,” in Crystal 
Engineering: From Molecules and Crystals to Materials, 1999, pp. 79–88. 
[206] L. N. Liem and N. Tran, (2018), “ Calculations of the Racah parameter B for 
Mn4+ and Mn2+ ions doped in CaAl2O4 ,” IOP Conf. Ser. Mater. Sci. Eng., vol. 
343, p. 012026. 
 139 
[207] H. Yamamoto, (2006), “Principal phosphor materials and their optical 
properties,” in Phosphor Handbook, Second Edition, vol. 1, 2006, pp. 231–
245. 
[208] V. Singh, R. P. S. Chakradhar, J. L. Rao, and Y. Jho, (2012), “EPR and 
photoluminescence properties of green light emitting LaAl11O18: Mn2+ 
phosphors,” Phys. B Phys. Condens. Matter, vol. 407, no. 12, pp. 2289–2294. 
[209] JiaJia Nia, Qian Liu, Jieqiong Wana, Guanghui Liua, Zhenzhen Zhoua, 
Fangfang, (2018), “Novel Luminescent Properties and Thermal Stability of 
Non-Rare-Earth Ca-α-Sialon: Mn2+ Phosphor”, J. Lumin., vol. 89, pp. 454–
456. 
[210] Bo Wang, Youchao Kong, Zikun Chen, Xiaoshuang Li, Shuangpeng Wang, 
Qingguang Zeng, (2019) “Thermal stability and photoluminescence of Mn2+ 
activated green-emitting feldspar phosphor SrAl2Si2O8: Mn2+ for wide gamut 
w-LED backlight”, Optical materials, vol. 98, no. 9, pp. 371–375. 
[211] Enhai Song, Xingxing Jiang, Yayun Zhou, Zheshuai Lin, Shi Ye, Zhiguo Xia, 
and Qinyuan Zhang, (2019), “Heavy Mn2+ doped MgAl2O4 Phosphor for High-
Efficient Near-Infrared Light-Emitting Diode and the Night-Vision 
Application”, Adv. Optical Mater, vol. 179, pp. 1035–1041. 
[212] K. Sankarasubramanian, B. Devakumar, G. Annadurai, L. Sun, Y. J. Zeng, and 
X. Huang, (2018), “Novel SrLaAlO4:Mn4+ deep-red emitting phosphors with 
excellent responsiveness to phytochrome PFR for plant cultivation LEDs: 
Synthesis, photoluminescence properties, and thermal stability,” RSC Adv., 
vol. 8, no. 53, pp. 30223–30229. 
[213] Y. Chen, Q. Wang, Z. Mu, J. Feng, D. Zhu, and F. Wu, (2019), “Bi3+ and Mn4+ 
co-doped La2MgGeO6 blue-red tunable emission phosphors based on energy 
transfer for agricultural applications,” Optik (Stuttg)., vol. 179, no. November 
2018, pp. 1035–1041. 
[214] X. Huang and H. Guo, (2018), “Dyes and Pigments Finding a novel highly 
efficient Mn4+ -activated Ca3La2W2O12 far-red emitting phosphor with 
excellent responsiveness to phytochrome PFR: Towards indoor plant 
cultivation application,” Dye. Pigment., vol. 152, no. January, pp. 36–42. 
[215] L. Li, Y. Pan, Y. Huang, S. Huang, and M. Wu, (2017), “Dual-emissions with 
energy transfer from the phosphor Ca14Al10Zn6O35:Bi3+,Eu3+ for application in 
agricultural lighting,” J. Alloys Compd., vol. 724, pp. 735–743. 
[216] J. Chen, C. Guo, Z. Yang, T. Li, and J. Zhao, (2016), “Li2SrSiO4:Ce3+, Pr3+ 
Phosphor with Blue, Red, and Near-Infrared Emissions Used for Plant Growth 
LED,” J. Am. Ceram. Soc., vol. 99, no. 1, pp. 218–225. 
[217] Jiayu Chen, Niumiao Zhang, Chongfeng Guo, Fengjuan Pan, Xianju Zhou, Hao 
Suo, Xiaoqi Zhao, and Ewa M. Goldys, (2016), “Site-Dependent Luminescence 
 140 
and Thermal Stability of Eu2+ Doped Fluorophosphate toward White LEDs for 
Plant Growth,” ACS Appl. Mater. Interfaces, vol. 8, no. 32, pp. 20856–20864. 
[218] T. Hu, H. Lin, J. Xu, B. Wang, J. Wang, and Y. Wang, (2017), “Color-tunable 
persistent luminescence in oxyfluoride glass and glass ceramic containing 
Mn2+:α-Zn2SiO4 nanocrystals,” J. Mater. Chem. C, vol. 5, no. 6, pp. 1479–
1487. 
[219] Zhou, Ziwei Zheng, Jiming Shi, Rui Zhang, Niumiao Chen, Jiayu Zhang, 
Ruoyu Suo, Hao Goldys, Ewa M. Guo, Chongfeng, (2017), “Ab Initio Site 
Occupancy and Far-Red Emission of Mn4+ in Cubic-Phase La(MgTi)1/2O3 for 
Plant Cultivation,” ACS Appl. Mater. Interfaces, vol. 9, no. 7, pp. 6177–6185. 
[220] Sun, L., Devakumar, B., Guo, H., Liang, J., Li, B., Wang, S., Huang, X, (2018), 
“Synthesis, structure, and luminescence characteristics of far-red emitting 
Mn4+-activated LaScO3 perovskite phosphors for plant growth,” RSC Adv., 
vol. 8, no. 58, pp. 33035–33041. 
[221] K. Park, H. Kim, and D. A. Hakeem, (2017), “Effect of host composition and 
Eu3+ concentration on the photoluminescence of aluminosilicate 
(Ca,Sr)2Al2SiO7:Eu3+ phosphors,” Dye. Pigment., vol. 136, pp. 70–77. 
[222] X. Huang, B. Li, H. Guo, and D. Chen, (2017), “Molybdenum-doping-induced 
photoluminescence enhancement in Eu3+-activated CaWO4 red-emitting 
phosphors for white light-emitting diodes,” Dye. Pigment., vol. 143, pp. 86–
94. 
[223] S. Tamboli, D. I. Shahare, and S. J. Dhoble, (2018), “Luminescence properties 
of Na2Sr2Al2PO4Cl9:Sm3+phosphor,” Phys. B Condens. Matter, vol. 535, pp. 
157–161. 
[224] X. Huang and H. Guo, (2018), “A novel highly efficient single-composition 
tunable white-light-emitting LiCa3MgV3O12:Eu3+ phosphor,” Dye. Pigment., 
vol. 154, no. February, pp. 82–86. 
[225] H. Guo and X. Huang, (2018), “Low-temperature solid-state synthesis and 
photoluminescence properties of novel high-brightness and thermal-stable 
Eu3+-activated Na2Lu(MoO4)(PO4) red-emitting phosphors for near-UV-
excited white LEDs,” J. Alloys Compd., vol. 764, pp. 809–814. 
[226] Liang, J., Devakumar, B., Sun, L., Sun, Q., Wang, S., Li, B.,Huang, X., (2019), 
“Mn4+-activated KLaMgWO6: A new high-efficiency far-red phosphor for 
indoor plant growth LEDs,” Ceram. Int., vol. 45, no. 4, pp. 4564–4569. 
[227] X. Gu, Z. He, and X. Y. Sun, (2018), “The deep red emission of Mn4+ doped 
SrLaMgNbO6 flower-like microsphere phosphors,” Chem. Phys. Lett., vol. 
707, pp. 129–132. 
[228] Q. Shao, H. Ding, L. Yao, J. Xu, C. Liang, and J. Jiang, (2018), 
“Photoluminescence properties of a ScBO3:Cr3+ phosphor and its applications 
 141 
for broadband near-infrared LEDs,” RSC Adv., vol. 8, no. 22, pp. 12035–
12042. 
[229] S. Zhang, Y. Hu, L. Chen, Y. Fu, and G. Ju, (2016), “persistent luminescence,” 
vol. 6, no. 100, pp. 8638–8645. 
[230] P. P. Das, A. Roy, S. Agarkar, and P. S. Devi, (2018), “Hydrothermally 
synthesized fluorescent Zn2SnO4 nanoparticles for dye sensitized solar cells,” 
Dye. Pigment., vol. 154, pp. 303–313. 
[231] M. J. Weber and T. E. Varitimos, (1974), “Optical spectra and relaxation of 
Cr3+ions in YAlO3,” J. Appl. Phys., vol. 45, no. 2, pp. 810–816. 
[232] Y. Katayama, H. Kobayashi, J. Ueda, B. Viana, and S. Tanabe, (2016), 
“Persistent luminescence properties of Cr3+-Sm3+ activated LaAlO3 
perovskite,” Opt. Mater. Express, vol. 6, no. 5, p. 1500. 
[233] Y. Zhuang, J. Ueda, and S. Tanabe, (2013), “Tunable trap depth in Zn(Ga1-
xAlx)2O4:Cr,Bi red persistent phosphors: Considerations of high-temperature 
persistent luminescence and photostimulated persistent luminescence,” J. 
Mater. Chem. C, vol. 1, no. 47, pp. 7849–7855. 
[234] Meng, X., Wang, Z., Qiu, K., Li, Y., Liu, J., Wang, Z.,Li, P., (2018), “Design 
of a Novel Near-Infrared Phosphor by Controlling the Cationic Coordination 
Environment,” Cryst. Growth Des., vol. 18, no. 8, pp. 4691–4700. 
[235] D. Jaque and J. Garc, (2000), “Up-conversion luminescence in the 
Ca3Ga2Ge3O12: Nd3+ laser,” vol. 12. 
[236] A. R. Denton and N. W. Ashcroft, (1991), “Vegards law,” Phys. Rev. A, vol. 
43, no. 6, pp. 3161–3164. 
[237] Jeon, J.-W., Jeon, D.-W., Sahoo, T., Kim, M., Baek, J.-H., Hoffman, J. L.,Lee, 
I.-H., (2011), “Effect of annealing temperature on optical band-gap of 
amorphous indium zinc oxide film,” J. Alloys Compd., vol. 509, no. 41, pp. 
10062–10065. 
[238] Y. Dou, T. Fishlock, R. Egdell, D. Law, and G. Beamson, (1997), “Band-gap 
shrinkage in n-type-doped CdO probed by photoemission spectroscopy,” Phys. 
Rev. B - Condens. Matter Mater. Phys., vol. 55, no. 20, pp. R13381–R13384. 
[239] Shin, S. S., Yang, W. S., Noh, J. H., Suk, J. H., Jeon, N. J., Park, J. H., Seok, 
S. I., (2015), “High-performance flexible perovskite solar cells exploiting 
Zn2SnO4 prepared in solution below 100°C,” Nat. Commun., vol. 6, no. May, 
pp. 1–8. 
[240] W. C. Wang, Q. H. Le, Q. Y. Zhang, and L. Wondraczek, (2017), “Fluoride-
sulfophosphate glasses as hosts for broadband optical amplification through 
transition metal activators,” J. Mater. Chem. C, vol. 5, no. 31, pp. 7969–7976. 
[241] J. Zhou and Z. Xia, (2014), “Synthesis and near-infrared luminescence of 
La3GaGe5O16:Cr3+ phosphors,” RSC Adv., vol. 4, no. 86, pp. 46313–46318. 
 142 
[242] B. Viana, A. J. J. Bos, T. Maldiney, C. Richard, D. Scherman, and D. Gourier, 
(2014), “Storage of Visible Light for Long-Lasting Phosphorescence in 
Chromium-Doped Zinc Gallate,” Chem. Mater., vol. 26, pp. 1365–1373. 
[243] Y. Zhuang, J. Ueda, and S. Tanabe, (1882), “Enhancement of Red Persistent 
Luminescence in Cr3+-Doped ZnGa2O4 Phosphors by Bi2O3 Codoping,” vol. 
052602, pp. 2–6. 

File đính kèm:

  • pdfsynthesis_and_properties_of_undoped_and_transition_metal_mn2.pdf
  • pdfthong tin mới luận án - tiếng Anh.pdf
  • pdfthong tin mới luận án- Tiếng Việt.pdf
  • pdfTom tat LA Tieng Anh-Le Thi Thao Vien-2020.pdf
  • pdfTom tat LA -tiếng việt-Lê Thị Thảo Viễn.pdf