Low temperature catalytic oxidation of volatile organic compounds (vocs) over catalysts of Cuo - Co3O4 on supports
Volatile organic compounds (VOCs) are widespread pollutants that have
adverse effects on the environment and human health. Therefore, they should be
converted into harmless substances before releasing into the atmosphere. Many
techniques, such as absorption, adsorption, biotechnology, thermal oxidation,
catalytic oxidation, membrane etc., have been studied and applied for VOCs
removal. Generally, adsorption is the most common technology used in industry
because of its advantages as high adsorption capacity, low temperature process.
However, it has some disadvantages in the desorption process as it is not suitable to
apply for VOCs with small amount and it releases VOCs so it is not suitable for
unvalued VOCs which are not worth to recover. Catalytic oxidation is a promising
and effective technique, which can apply for VOCs decomposition because of the
high activation. However, this is a high temperature process and waste energy.
Therefore, the combination of adsorption and catalytic oxidation in the desorption
process is proposed to treat unvalued VOCs or polluted VOCs with small amount.
Most of the catalysts for the oxidation that have been used in industry are
noble metals, but they are easy to be deactivated by sintering or poisoning. Single
metallic oxides on porous materials were also used, but their activities are not as
strong as noble metals.
Tóm tắt nội dung tài liệu: Low temperature catalytic oxidation of volatile organic compounds (vocs) over catalysts of Cuo - Co3O4 on supports
MINISTRY OF EDUCTION AND TRAINING HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY Ngo Quoc Khanh LOW TEMPERATURE CATALYTIC OXIDATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) OVER CATALYSTS OF CuO-Co3O4 ON SUPPORTS DOCTORAL DISSERTATION OF ENVIRONMENAL ENGINEERING Ha Noi – 2021 MINISTRY OF EDUCTION AND TRAINING HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY Ngo Quoc Khanh LOW TEMPERATURE CATALYTIC OXIDATION OF VOLATILE ORGANIC COMPOUNDS (VOCs) OVER CATALYSTS OF CuO-Co3O4 ON SUPPORTS Major: Environmental Engineering Code: 9520320 DOCTORAL DISSERTATION OF ENVIRONMENAL ENGINEERING SUPERVIORS: 1. Assoc. Prof. Dr. Vu Đuc Thao 2. Prof. Dr. Le Minh Thang Ha Noi - 2021 i | P a g e ACKNOWLEDGEMENT First of all, I would like to thank Prof. Nguyen Huu Phu, who raises my interest in catalysis. Secondly, I would like to thank Associate Prof. Dr. Vu Duc Thao and Prof. Dr. Le Minh Thang, who are my supervisors, because of their guidance, encouragement, and kindly help in the scientific works. Also, I would like to thank my colleagues at Vietnam National Institute of Occupational Safety and Health (VNNIOSH), lectures in School of Environmental Science and Technology (INEST) and School of Chemical Engineering (SCE), and all members in Laboratory of the Petrochemical Refining and Catalytic Materials (LPRCM), and Laboratory of Environmentally Friendly Material and Technologies, that I believe my work cannot be completed without their generous assistance. Moreover, I would like to thank Dr. Sebastian Wohlrab and all staff in LIKAT for their friendly attitude and support, when I conducted the short-course research in University of Rostock - Germany. Finally, I would like to give special thanks to my parents, my wife, and my beloved daughters because of their faced difficulties, supports, encourage as well as love. The financial supports of the Rohan Program – DAAD & BMZ, German, and the Project no 216/02/TLD (VNNIOSH) are acknowledged in this thesis. ii | P a g e COMMITMENT The study has been conducted at the School of Environmental Science and Technology (INEST), School of Chemical Engineering (SCE), Hanoi University of Science and Technology (HUST), Leibniz-Institute for Catalysis (LIKAT), University of Rostock (Germany) and Vietnam National Institute of Occupational Safety and Health (VNNIOSH). The work has been completed under the supervision of Associate Prof. Dr. Vu Duc Thao and Prof. Dr. Le Minh Thang. I assure that this is my research. All the data and results in the thesis are entirely true, were agreed to use in this paper by the co-author. This research has not been published by other authors than me. Ngo Quoc Khanh iii | P a g e TABLE OF CONTENTS ACKNOWLEDGEMENT ........................................................................................... i COMMITMENT ......................................................................................................... ii TABLE OF CONTENTS .......................................................................................... iii LIST OF TABLES ..................................................................................................... vi LIST OF FIGURES ................................................................................................. viii LIST OF ACRONYM AND ABBREVIATIONS ..................................................... xi INTRODUCTION ....................................................................................................... 1 CHAPTER 1. LITERATURE REVIEW .................................................................... 5 1.1. Overview of volatile organic compounds ........................................................ 5 1.2. Overview of VOCs treatment technologies...................................................... 7 1.2.1. Oxidation method ...................................................................................... 9 1.2.2. Biological method .................................................................................... 11 1.2.3. Absorption method .................................................................................. 14 1.2.4. Adsorption method .................................................................................. 14 1.2.5. Condensation method .............................................................................. 15 1.3. Catalytic oxidation of VOCs .......................................................................... 16 1.3.1. Mechanisms and kinetics of catalytic oxidation of VOCs ...................... 16 1.3.2. Catalysts for oxidation of VOCs.............................................................. 17 1.3.2.1. Noble-metal based catalysts .............................................................. 17 1.3.2.2. Non-noble metal oxides .................................................................... 22 1.3.2.3. Non-noble mix metal oxides ............................................................. 26 1.3.3. Catalytic supports and preparation methods for VOCs oxidation ........... 29 1.4. The summary of literature review .................................................................. 30 CHAPTER 2. EXPERIMENT .................................................................................. 32 2.1. Catalyst preparation ........................................................................................ 32 iv | P a g e 2.1.1. Wet impregnation method ....................................................................... 32 2.1.2. Solid-solid blending method .................................................................... 34 2.2. Catalyst characterization ................................................................................ 36 2.2.1. Thermal analysis ...................................................................................... 36 2.2.2. Physical adsorption .................................................................................. 37 2.2.3. X-ray diffraction ...................................................................................... 38 2.2.4. Scanning electron microscopy ................................................................. 39 2.2.5. Chemical and temperature programmed desorption ................................ 40 2.3. Adsorption and catalytic activity measurement .......................................... 43 2.3.1. Adsorption and nitrogen desorption measurement .............................. 43 2.3.2. Catalytic activity measurement for complete oxidation of toluene ..... 45 2.3.3. Catalytic activity measurement for complete oxidation of methane ... 50 CHAPTER 3. RESULTS AND DISCUSSIONS ...................................................... 52 3.1. Characterizations of supports and catalysts.................................................... 52 3.1.1. Thermal analysis ...................................................................................... 52 3.1.2. Physisorption ........................................................................................... 53 3.1.3. X-ray diffraction (XRD) .......................................................................... 59 3.1.4. Scanning electron microscopy ................................................................. 66 3.1.5. Chemisorption .......................................................................................... 69 3.1.5.1. CO pulse ............................................................................................ 69 3.1.5.2. Oxygen temperature programed desorption (O2-TPD) ..................... 71 3.2. Total oxidation ability of the catalysts for methane ....................................... 73 3.3. Toluene treatment ........................................................................................... 82 3.3.1. Toluene adsorption on catalysts/ sorbents ............................................... 82 3.3.1.1. Toluene adsorption over Cu-Co/Activated carbon ........................... 82 3.3.1.2. Toluene adsorption over Cu-Co/Silica gel ........................................ 83 3.3.1.3. Toluene adsorption over Cu-Co/MCM-41 ........................................ 84 v | P a g e 3.3.2. Oxidation over catalysts in desorption process ....................................... 87 3.3.2.1. Toluene oxidation over Cu-Co/Activated carbon in desorption process ............................................................................................................ 87 3.3.2.2. Toluene oxidation over Cu-Co/ /Silica gel in desorption process .... 91 3.3.2.3. Toluene oxidation over Cu-Co/MCM-41 in desorption process ...... 93 3.3.3. Toluene treatment by complete oxidation over catalysts ........................ 97 3.3.3.1. Complete oxidation of toluene on Cu-Co/Silica gel ......................... 97 3.3.3.2. Directed oxidation of toluene on Cu-Co/MCM-41 ........................... 98 3.3.3.3. Directed oxidation of toluene on Cu-Co oxides ............................. 100 CONCLUSIONS ..................................................................................................... 104 RECOMMENDATIONS ........................................................................................ 105 LIST OF PUBLICATIONS .................................................................................... 106 REFERENCES ........................................................................................................ 107 APPENDIX ............................................................................................................. 116 vi | P a g e LIST OF TABLES Table 1.1. Definition of volatile organic compounds (VOCs) .................................... 5 Table 1.2. The temperature required for complete oxidation of VOCs .................... 10 Table 1.3. The required temperature for catalytic oxidation of VOCs ..................... 11 Table 1.4. Performance evaluation of bioreactors for VOCs and odor control ........ 13 Table 1.5. The absorption solutions can absorb the organic solvent vapor .............. 14 Table 1.6. The noble metal catalysts for VOCs oxidation ........................................ 19 Table 1.7. The non-noble metal oxide catalysts overview ........................................ 24 Table 1.8. The mixed non-noble metal oxide catalysts overview ............................ 27 Table 2.1. Properties of chemicals using to prepare catalysts .................................. 32 Table 2.2. List of catalysts prepared by wet impregnation method .......................... 34 Table 2.3. List of catalysts prepared by solid-solid bleeding method ...................... 36 Table 2.4. Technique of thermal analysis ................................................................. 37 Table 2.5. Operating factors of GC ........................................................................... 44 Table 3.1. The Surface characteristics of AC, silica gel and MCM-41 .................... 56 Table 3.2. The surface characteristics of catalysts on AC and silica gel .................. 56 Table 3.3. The surface characteristics of catalysts on MCM-41 ............................... 57 Table 3.4. Crystalline size and phase of Cu-Co/Silica gel ........................................ 60 Table 3.5. Crystalline sizes and phases of 10% Cu-Co on MCM-41 ....................... 62 Table 3.6. Crystalline sizes and phases of 20% Cu-Co on MCM-41 ....................... 64 Table 3.7. Crystalline sizes of Cu-Co oxides ............................................................ 65 Table 3.8. Crystalline sizes of catalysts without supports ........................................ 66 Table 3.9. Metal dispersion of catalysts .................................................................... 71 Table 3.10. O2 - TPD profile of catalysts .................................................................. 73 Table 3.11. CH4-TPD quantities of Cu-Co/MCM-41 .............................................. 75 Table 3.12. Adsorption amount of toluene on Cu-Co/Activated carbon .................. 83 vii | P a g e Table 3.13. Adsorption amount of toluene on Cu-Co/Silica gel ............................... 84 Table 3.14 Adsorption amount of toluene on Cu-Co/MCM-41 ............................... 86 Table 3.15. Generated toluene by thermal desorption .............................................. 90 Table 3.16. Evaluation of total toluene oxidation over the catalysts on AC ............ 90 Table 3.17. Toluene adsorption capacity of catalysts on Silica gel base .................. 93 Table 3.18. Evaluation of total toluene oxidation over the catalysts on silica gel .... 93 Table 3.19. Evaluation of total toluene oxidation over catalysts on MCM-41 ......... 95 Table 3.20. Comparison with other studies ............................................................. 103 viii | P a g e LIST OF FIGURES Figure 1.1. Photochemical smog formation. ............................................................... 7 Figure 1.2. VOCs emission control technologies. ...................................................... 8 Figure 1.3. Catalytic oxidation technology for treatment of VOCs. ......................... 10 Figure 1.4. The relationship between temperature and vapor pressure of the most common VOCs. ......................................................................................................... 15 Figure 1.5. The mechanisms of VOCs oxidation over catalysts. .............................. 16 Figure 2.1. Procedure of wet impregnation method.................................................. 33 Figure 2.2. Procedure of solid-solid blending method. ............................................. 35 Figure 2.6. Bragg ‘s diffraction. ................................................................................ 38 Figure 2.7. Schematic diagram of the core components of an SEM microscope. .... 39 Figure 2.8. Experimental for temperature programmed reduction, oxidation and desorption. ................................................................................................................. 41 Figure 2.9. Adsorption and desorption experiment systems. .................................... 43 Figure 2.10. The toluene adsorption – desorption oxidation experiment systems. .. 46 Figure 2.11. The complete oxidation of toluene experiment systems. ..................... 49 Figure 2.12. Total methane oxidation experiment systems. ..................................... 51 Figure 3.1. Thermal analysis in static air of catalyst on AC. .................................... 52 Figure 3.2. Isotherm linear plot of AC, silica gel and MCM-41 .............................. 55 Figure 3.3. Pore distribution of AC, silica gel a ... M. Valkaj, “A comparative study of toluene oxidation on different metal oxides,” Chem. Eng. Trans., vol. 57, pp. 889–894, 2017, doi: 10.3303/CET1757149. 42. S. C. Kim, Y. K. Park, and J. W. Nah, “Property of a highly active bimetallic catalyst based on a supported manganese oxide for the complete oxidation of toluene,” Powder Technol., vol. 266, pp. 292–298, 2014, doi: 10.1016/j.powtec.2014.06.049. 43. N. H. Hào, “Nghiên cứu chế tạo vật liệu lưỡng chức năng hấp phụ- xúc tác trên cơ sở oxit đồng và than hoạt tính để xử lý các chất ô nhiễm hữu cơ dễ bay hơi,” Ph.D. dissertation, Hanoi national university of eduction, Hanoi, Vietnam, 2017. 44. [1] L. Y. Lin, C. Y. Wang, and H. Bai, “A comparative investigation on the low- temperature catalytic oxidation of acetone over porous aluminosilicate- supported cerium oxides,” Chem. Eng. J., vol. 264, pp. 835–844, 2015, doi: 10.1016/j.cej.2014.12.042. 112 | P a g e 45. T. Kondratowicz, M. Drozdek, A. Rokicińska, P. Natkański, M. Michalik, and P. Kuśtrowski, “Novel CuO-containing catalysts based on ZrO2 hollow spheres for total oxidation of toluene,” Microporous Mesoporous Mater., vol. 279, no. January, pp. 446–455, 2019, doi: 10.1016/j.micromeso.2019.01.031. 46. N. T. Mơ, “Nghiên cứu tổng hợp xúc tác trên cơ sở oxit mangan để xử lý VOC ở nhiệt độ thấp,” Ph.D. dissertation, Hanoi national university of eduction, Hanoi, Vietnam, 2018. 47. A. K. Sinha and K. Suzuki, “Novel mesoporous chromium oxide for VOCs elimination,” Appl. Catal. B Environ., vol. 70, no. 1–4, pp. 417–422, 2007, doi: 10.1016/j.apcatb.2005.10.035. 48. S. A. C. Carabineiro et al., “Catalytic oxidation of toluene on Ce-Co and La-Co mixed oxides synthesized by exotemplating and evaporation methods,” Catal. Today, vol. 244, pp. 161–171, 2015, doi: 10.1016/j.cattod.2014.06.018. 49. W. Tang et al., “Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs,” J. Rare Earths, vol. 33, no. 1, pp. 62–69, 2015, doi: 10.1016/S1002-0721(14)60384-7. 50. C. He et al., “Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol,” Appl. Catal. B Environ., vol. 147, pp. 156–166, 2014, doi: 10.1016/j.apcatb.2013.08.039. (Trùng 54) 51. [1] Z. Qu, K. Gao, Q. Fu, and Y. Qin, “Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn-Co oxides prepared by two-step hydrothermal method,” Catal. Commun., vol. 52, pp. 31–35, 2014, doi: 10.1016/j.catcom.2014.03.035. 52. G. Zhou, X. He, S. Liu, H. Xie, and M. Fu, “Phenyl VOCs catalytic combustion on supported CoMn/AC oxide catalyst,” J. Ind. Eng. Chem., vol. 21, pp. 932– 941, 2015, doi: 10.1016/j.jiec.2014.04.035. 53. M. Popova, Á. Szegedi, Z. Cherkezova-Zheleva, A. Dimitrova, and I. Mitov, “Toluene oxidation on chromium- and copper-modified SiO2 and SBA-15,” 113 | P a g e Appl. Catal. A Gen., vol. 381, no. 1–2, pp. 26–35, 2010, doi: 10.1016/j.apcata.2010.03.040.. 54. C. He et al., “Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol,” Appl. Catal. B Environ., vol. 147, pp. 156–166, 2014, doi: 10.1016/j.apcatb.2013.08.039. 55. W. Tang, X. Wu, S. Li, W. Li, and Y. Chen, “Porous Mn-Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs,” Catal. Commun., vol. 56, pp. 134–138, 2014, doi: 10.1016/j.catcom.2014.07.023. 56. Z. Qu, K. Gao, Q. Fu, and Y. Qin, “Low-temperature catalytic oxidation of toluene over nanocrystal-like Mn-Co oxides prepared by two-step hydrothermal method,” Catal. Commun., vol. 52, pp. 31–35, 2014, doi: 10.1016/j.catcom.2014.03.035. 57. B. de Rivas, C. Sampedro, M. García-Real, R. López-Fonseca, and J. I. Gutiérrez-Ortiz, “Promoted activity of sulphated Ce/Zr mixed oxides for chlorinated VOC oxidative abatement,” Appl. Catal. B Environ., vol. 129, pp. 225–235, 2013, doi: 10.1016/j.apcatb.2012.09.026. 58. C. Y. Lu, H. H. Tseng, M. Y. Wey, L. Y. Liu, J. H. Kuo, and K. H. Chuang, “Al2O3-supported Cu-Co bimetallic catalysts prepared with polyol process for removal of BTEX and PAH in the incineration flue gas,” Fuel, vol. 88, no. 2, pp. 340–347, 2009, doi: 10.1016/j.fuel.2008.09.012. 59. S. Li, H. Wang, W. Li, X. Wu, W. Tang, and Y. Chen, “Effect of Cu substitution on promoted benzene oxidation over porous CuCo-based catalysts derived from layered double hydroxide with resistance of water vapor,” Appl. Catal. B Environ., vol. 166–167, pp. 260–269, 2015, doi: 10.1016/j.apcatb.2014.11.040. 60. L. V. Ánh, “Nghiên cứu xử lý một số hợp chất clo hữu cơ bằng xúc tác đồng oxit,” Ph.D. dissertation, Military Institute of Science and Technology, Ha Noi, Vietnam, 2011. 114 | P a g e 61. J. Kim et al., “In situ spectroscopic and computational studies on a MnO2-CuO catalyst for use in volatile organic compound decomposition,” ACS Omega, vol. 2, no. 10, pp. 7424–7432, 2017, doi: 10.1021/acsomega.7b00962. 62. J. W. Li, K. L. Pan, S. J. Yu, S. Y. Yan, and M. B. Chang, “Removal of formaldehyde over MnxCe1-xO2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation,” J. Environ. Sci. (China), vol. 26, no. 12, pp. 2546– 2553, 2014, doi: 10.1016/j.jes.2014.05.030. 63. M. Hoffmann et al., “Improved catalytic methane combustion of Pd/CeO2 catalysts via porous glass integration,” Appl. Catal. B Environ., vol. 179, pp. 313–320, 2015, doi: 10.1016/j.apcatb.2015.05.028. 64. Y. Weng et al., “Jet-Fuel range hydrocarbons from biomass-derived sorbitol over Ni-HZSM-5/SBA-15 catalyst,” Catalysts, vol. 5, no. 4, pp. 2147–2160, 2015, doi: 10.3390/catal5042147. 65. L. F. Liotta et al., “Total oxidation of propene at low temperature over Co3O4-CeO2 mixed oxides: Role of surface oxygen vacancies and bulk oxygen mobility in the catalytic activity,” Appl. Catal. A Gen., vol. 347, no. 1, pp. 81– 88, 2008, doi: 10.1016/j.apcata.2008.05.038. 66. A. Pintar, J. Batista, and S. Hočevar, “TPR, TPO, and TPD examinations of Cu0.15Ce0.85O2-y mixed oxides prepared by co-precipitation, by the sol-gel peroxide route, and by citric acid-assisted synthesis,” J. Colloid Interface Sci., vol. 285, no. 1, pp. 218–231, 2005, doi: 10.1016/j.jcis.2004.11.049. 67. S. Balcer, “Homogeneous catalytic systems for selective oxidation of methane: State of the art,” Polish J. Chem. Technol., vol. 17, no. 3, pp. 52–61, 2015, doi: 10.1515/pjct-2015-0050. 68. A. A. Slepterev., V S. Salnikov, P. G. Tsyrulnikov, A. S. Noskov , V. N. Tomilov, N. A. Chumakova, and A. N. Zagoruiko., “Homogeneous high- temperature oxidation of methane,” React. Kinet. Catal. Lett., vol 91, no. 2, pp. 273-282, 2007, doi: 10.1007/s11144-007-5158-5. 115 | P a g e 69. D. Das, V. Gaur, and N. Verma, “Removal of volatile organic compound by activated carbon fiber,” Carbon N. Y., vol. 42, no. 14, pp. 2949–2962, 2004, doi: 10.1016/j.carbon.2004.07.008. 70. M. Yao, Q. Zhang, D. W. Hand, D. Perram, and R. Taylor, “Adsorption and regeneration on activated carbon fiber cloth for volatile organic compounds at indoor concentration levels,” J. Air Waste Manag. Assoc., vol. 59, no. 1, pp. 31– 36, 2009, doi: 10.3155/1047-3289.59.1.31. 71. A. Małecki, A. Małecka, R. Gajerski, B. Prochowska-Klisch, and A. Podgórecka, “The mechanism of thermal decomposition of Co(NO3)2.2H2O,” J. of Thermal Analysis, vol 34, no. 1, pp. 203–209, 1988, doi: 10.1007/BF01913386. 116 | P a g e APPENDIX Appendix 1: Adsorption-desorption of toluene Appendix 1.1: Adsorption-desorption of toluene on Cu-Co/Activated carbon Time (min) WI-AC180 WI-AC7Cu3Co WI-AC5Cu5Co WI-AC3Cu7Co Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) 0 0 0 0 0 0 0 0 0 1 0 2336 0 1417 0 1760 0 1680 15 0 2063 0 1186 0 1428 0 1431 30 0 1695 0 1295 0 1248 0 1053 45 0 1411 0 870 0 944 0 574 60 0 973 0 575 0 645 0 494 75 0 550 0 501 0 482 0 313 90 0 237 0 378 0 428 0 232 105 0 185 0 326 0 377 0 157 120 0 119 0 253 0 168 0 87 135 0 107 0 197 0 111 0 0 150 0 69 0 135 0 0 0 165 0 0 0 73 0 0 180 0 0 0 57 0 0 195 0 0 0 0 0 0 210 0 0 0 0 0 225 0 0 0 0 240 0 0 180 0 255 0 69 432 0 270 0 308 454 0 285 0 407 454 0 300 0 550 514 373 315 0 821 876 454 330 0 940 1075 552 345 69 997 1075 876 360 181 997 1075 985 117 | P a g e 375 829 997 1075 985 390 776 997 1075 985 405 1012 997 1075 985 420 1012 997 1075 985 435 1012 997 1075 985 118 | P a g e Appendix 1.2: Adsorption-desorption of toluene on Cu-Co/Silica gel Time (min) SS-S5Cu5Co SS-S20Co Ad (ppm) De (ppm) Ad (ppm) De (ppm) 0 0 0 0 0 1 0 12704 0 3538 12.75 7053 539 10408 499 25.5 8649 120 11389 75 38.25 9315 0 11389 0 51 10375 0 63.75 10572 76.5 10738 89.25 10889 102 10889 119 | P a g e Appendix 1.3: Adsorption-desorption of toluene on Cu-Co/MCM-41 prepared by solid-solid blending method Time (min) SS-M7Cu3Co SS-M5Cu5Co SS-M3Cu7Co SS-M10Co SS-M10Cu SS-M20Co Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 15968 0 12639 4739 10388 0 11522 247 9610 0 11281 12.75 0 15330 0 12314 0 5122 0 12288 0 8510 2081 9298 25.5 0 15513 339 9664 0 2526 35 12125 0 5726 4456 6523 38.25 0 11645 466 6561 1489 1674 56 10543 61 3217 7189 4166 51 0 8749 1036 4159 4801 945 971 9268 2357 1848 7746 2870 63.75 129 6142 1778 3191 6284 471 2575 7475 4446 1660 9587 2239 76.5 0 4845 3192 2448 7267 273 4827 5970 6399 0 10717 1595 89.25 2067 3853 5808 1893 7943 16 6740 5115 6835 0 11690 1231 102 5033 2968 7354 1551 8291 0 8182 4184 6579 0 11804 851 114.75 7771 2140 8270 1287 9019 0 9656 3482 8111 0 12356 762 127.5 10241 1819 8648 0 8965 0 10591 2592 8141 0 12356 0 140.25 12210 1438 9344 9688 0 11552 0 8576 0 153 13601 1209 9522 10192 0 12377 0 8547 0 165.75 14333 0 10264 10262 0 13492 0 8662 0 178.5 17187 0 11420 10549 0 11178 0 9075 0 191.25 16954 0 11791 10714 0 10931 0 9266 0 120 | P a g e 204 0 12001 10816 9370 216.75 12001 9983 229.5 121 | P a g e Appendix 1.4: Adsorption-desorption of toluene on Cu-Co/MCM-41 prepared by wet impregnation method Time (min) WI-M5Cu5Co WI-M20Co MCM-41 Ad (ppm) De (ppm) Ad (ppm) De (ppm) Ad (ppm) De (ppm) 0 0 0 0 0 0 0 1 0 5706 620 3689 0 20009 12.75 0 6903 3387 7783 0 16013 25.5 458 5773 8224 1479 9903 4476 38.25 1504 3985 11910 497 13453 1788 51 4893 2946 12909 0 15273 863 63.75 6120 2865 13528 16091 482 76.5 7173 2245 14098 17893 0 89.25 7444 1936 14098 18702 102 8025 1566 19185 114.75 8729 1327 19977 127.5 8830 994 20747 140.25 8980 0 153 9016 165.75 9097 178.5 9097 122 | P a g e Appendix 2: Oxidation in desorption process Appendix 2.1. Oxidation in desorption process over Cu-Co/Activated carbon Time (min) WI-AC7Cu3Co WI-AC5Cu5Co WI-AC3Cu7Co Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) 0 0 0 0 0 0 0 1 1067 4368 693 5761 1371 5395 15 739 1939 627 3681 1114 4289 30 465 2128 418 2528 928 3035 45 378 1505 185 1320 748 1320 60 185 450 83 820 574 1292 75 123 0 0 0 551 380 90 88 0 0 0 304 0 105 0 0 0 0 97 0 120 0 0 0 0 0 0 123 | P a g e Appendix 2.2. Oxidation in desorption process over Cu-Co/MCM-41 Time (min) SS-M7Cu3Co SS-M5Cu5Co SS-M3Cu7Co SS-M10Co SS-M10Cu WI-M5Cu5Co WI-M20Co Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) 0 10773.05 0 8476 0 14568.79 0 12062.92 0 8451.669 0 10875 0 13247 0 12.75 7173.878 0 7511 0 7026.384 0 7638.593 0 6826.916 0 5578 0 1544 0 25.5 4368.943 0 4587 0 3815.359 0 4259.829 0 3527.449 0 3291 0 2 0 38.25 2501.978 0 2849 0 1354.354 0 2230.476 0 1968.266 0 1789 0 0 0 51 1593.242 0 1935 0 619.5319 0 1324.665 0 1534.247 0 1049 0 0 0 63.75 1136.649 0 2043 0 379.6313 0 583.0763 0 1078.386 0 662 0 76.5 7.959375 0 1078 0 0 0 6.8175 0 540.4388 0 485 0 89.25 0 0 835 0 0 0 0 0 0 0 247 0 102 0 0 644 0 0 0 0 0 0 0 234 0 114.75 594 0 0 0 0 178 0 127.5 0 0 137 0 124 | P a g e Appendix 2.3. Oxidation in desorption process over Cu-Co/Silica gel Time (min) SS-S5Cu5Co SS-S20Co Toluene (ppm) COx (ppm) Toluene (ppm) COx (ppm) 0 12143 0 2901 0 1 125 0 180 0 12.75 13 0 0 0 25.5 0 0 0 0 38.25 0 0 0 0 51 0 0 o 0 125 | P a g e Appendix 3: Directed oxidation over Cu-Co/MCM-41 and Cu-Co/Silica gel Samples Toluene conversion at temperature (%) 150oC 180oC 200oC 250oC 300oC 350oC 400oC 450oC 500oC SS-M7Cu3Co 99.9 65.9 55.9 54.1 54.4 62.5 100 100 100 SS-M5Cu 5Co 96.2 80.3 97 76.7 28.4 43.6 73.3 100 100 SS-M3Cu7Co 98.2 66.7 58.9 57.2 59.1 69.8 100 100 100 SS-M10Co 100 79.6 59.5 61.3 57.1 62.5 100 100 100 SS-M10Cu 100 63.7 52.1 50 61.1 69.1 99.9 100 100 SS-M20Co 58.7 100 68.2 73.1 81.2 77.2 98.8 100 100 WI-M5Cu 5Co 100 100 86.8 56.2 23.5 70.9 73.6 96.8 100 WI-M20Co 99 95.9 96.4 19 55 63.5 100 100 100 SS-100Co 100 79.1 66.9 66.1 67.3 100 100 100 100 SS-100Cu 59.6 50.1 42.6 38.9 38.4 67.3 100 100 100 SS-5Cu5Co 73.5 63.9 51.9 53.2 52.8 100 100 100 100 SS-S5Cu 5Co - - - 55.3 59.6 68.3 70.1 71.2 100 SS-S20Co - - - 49.1 49.5 81.5 100 100 100 126 | P a g e Samples CO2 yield at temperature (%) 150oC 180oC 200oC 250oC 300oC 350oC 400oC 450oC 500oC SS-M7Cu3Co 0 0 0 0 1.1 10.2 100 93.5 90.7 SS-M5Cu 5Co 0 0 0 0 0 4 23.6 100 100 SS-M3Cu7Co 0 0 0 0 2.2 24.8 80.6 75.1 74.1 SS-M10Co 0 0 0 0 1.9 14.8 96.1 80 89.2 SS-M10Cu 0 0 0 0 2.5 19.6 91.1 80.2 65.4 SS-M20Co 0 0 0 15.6 53.3 50.2 100 100 100 WI-M5Cu5Co 0 0 0 0 0 2 10.4 100 100 WI-M20Co 0 0 0 6 13.8 41 100 100 100 SS-100Co 0 0 0 1.7 2.3 75.2 78.2 78.6 79.7 SS-100Cu 0 0 0 0 2.9 76.6 100 100 100 SS-5Cu5Co 0 0 0 0.8 19.4 90.3 90.9 90.3 93.5 SS-S5Cu5Co 0 0 0 0 0 0 1.8 17 64.9 SS-S20Co 0 0 0 4.1 28.7 100 100 100 100 127 | P a g e Appendix 4: Pictures of the research Picture 1. Toluene adsorption, desorption and oxidation experiment system Picture 2. Gas Chromatography with TCD detector 128 | P a g e Picture 3. Temperature control and reactor Picture 4. Nitrogen or Oxygen Mass flow controller Picture 5. Toluene generator 129 | P a g e Appendix 5: Pictures of some prepared catalysts 1. Activated carbon 2. Silica gel 3. MCM-41 4. WI-AC5Cu5Co 5. SS-S20Co 6. WI-S20Co 7. SS-M7Cu3Co 8. SS-M5Cu5Co 9. SS-M3Cu7Co 10. SS-M10Co 130 | P a g e 11. SS-M20Cu 12. WI-M5Cu5Co 13. WI-M3Cu7Co 14. WI-M10Co 15. WI-10Cu 16. SS-5Cu5Co 17. SS-100Co 18. SS-100Cu
File đính kèm:
- low_temperature_catalytic_oxidation_of_volatile_organic_comp.pdf
- 2. Tom tat LA - Tieng anh.pdf
- 2. Tom tat LA - Tieng viet.pdf
- 3. Ban trich yeu luan an.docx
- 4. Thong tin dua len web.docx