Luận án Nghiên cứu hiện tượng chuyển pha trong vùng hoạt lò phản ứng
Phase change in the nuclear reactor core is related to safety criteria such as Departure of
Nucleate Boiling (DNB) during normal and transient conditions. So that, a lot of computer
codes with verification and validation against experiment are used to investigation of thermal
hydraulics behavior of vertical boiling flow in core channel with system and component
scales. Until now, even many studies on boiling flow are implemented in CFD scale codes,
but their utilization to specific nuclear reactor is not yet applied. Thus, the utilization of many
codes including CFD scale (Ansys CFX) to investigate void fraction in hot channel of VVER-
1000/V392 reactor core is studied in this work. Due to VVER-1000/V392 nuclear reactor is a
candidate for Ninh Thuan 1 nuclear power project, so that the understanding of VVER’s
reactor technologies including research works of this thesis is important to develop
competence of nuclear safety in Vietnam.
Tóm tắt nội dung tài liệu: Luận án Nghiên cứu hiện tượng chuyển pha trong vùng hoạt lò phản ứng
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG MINH GIANG NGHIÊN CỨU HIỆN TƯỢNG CHUYỂN PHA TRONG VÙNG HOẠT LÒ PHẢN ỨNG LUẬN ÁN TIẾN SĨ CƠ HỌC Hà Nội – 2016 2 LỜI CAM ĐOAN Văn Hiền. Các số liệu, những kết luận nghiên cứu được trình bày trong luận văn này trung thực và chưa từng được công bố dưới bất cứ hình thức nào. Tôi xin chịu trách nhiệm về nghiên cứu của mình. GV Hướng dẫn Nghiên cứu sinh Nguyễn Đông BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HOÀNG MINH GIANG NGHIÊN CỨU HIỆN TƯỢNG CHUYỂN PHA TRONG VÙNG HOẠT LÒ PHẢN ỨNG Chuyên ngành: CƠ HỌC CHẤT LỎNG Mã số: 62440108 LUẬN ÁN TIẾN SĨ CƠ HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS.TS NGUYỄN PHÚ KHÁNH 2. TS TRẦN CHÍ THÀNH Hà Nội – 2016 3 LỜI CAM ĐOAN Tôi xin cam đoan luận án là công trình nghiên cứu của bản thân tôi dưới sự hướng dẫn của tập thể giáo viên hướng dẫn. Các kết quả nêu trong luận án là trung thực, không sao chép của bất kỳ công trình nào và chưa từng được công bố trong bất kỳ công trình nào khác. Hà Nội, ngày 27 tháng 4 năm 2016 NGHIÊN CỨU SINH HOÀNG MINH GIANG Hướng dẫn 1 PGS. NGUYỄN PHÚ KHÁNH Hướng dẫn 2 TS. TRẦN CHÍ THÀNH 4 LỜI CẢM ƠN Trước hết, tôi xin bày tỏ lòng kính trọng và biết ơn tới: PGS Nguyễn Phú Khánh và TS Trần Chí Thành, những người thày đã trực tiếp hướng dẫn, giúp đỡ tôi trong quá trình học tập và thực hiện luận án. Tôi xin chân thành cảm ơn các thày cô tại Bộ môn Kỹ thuật Hàng không và Vũ trụ, Viện Cơ khí Động lực; cảm ơn TS Lê Văn Hồng, Viện Năng lượng Nguyên tử Việt Nam, chủ nhiệm đề tài độc lập cấp nhà nước (mã số ĐTĐL.2011-G/82) “Nghiên cứu, phân tích, đánh giá và so sánh hệ thống công nghệ nhà máy điện hạt nhân dùng lò VVER-1000 giữa các loại AES-91, AES- 92 và AES-2006”, các đồng nghiệp Hoàng Tân Hưng, Trung tâm An toàn hạt nhân, Nguyễn Hữu Tiệp, Trung tâm Năng lượng hạt nhân, Viện Khoa học và Kỹ thuật hạt nhân đã giúp đỡ, tạo điều kiện để tôi có thể hoàn thành luận án này. Tôi cũng xin trân trọng cảm ơn Ban lãnh đạo Viện Khoa học và Kỹ thuật hạt nhân, Viện đào tạo Sau đại học của Trường Đại học Bách Khoa Hà Nội đã cử tôi đi đào tạo cũng như tạo điều kiện thuận lợi trong quá trình thực hiện luận án. Hà nội ngày 27/4/2016 Nghiên cứu sinh Hoàng Minh Giang 5 STUDY ON PHASE CHANGE IN THE CORE OF NUCLEAR REACTOR 6 TABLE OF CONTENTS Abbreviations and Nomenclature ............................................................................................................... 8 List of Tables .............................................................................................................................................. 12 List of Figures ............................................................................................................................................. 14 Overview .................................................................................................................................................... 17 Chapter 1. Introduction to research work ............................................................................................... 19 1.1 Status of nuclear power in the World and Vietnam ........................................................................... 19 1.2 Brief overview of nuclear safety ........................................................................................................ 20 1.3 Core thermal hydraulics safety analysis in transient condition .......................................................... 21 1.3.1 Role of void fraction in simulation of two phase flow ................................................................ 24 1.3.2 Experiment overview for bundle of sub channel analysis ........................................................... 25 1.3.3 Void fraction prediction study ..................................................................................................... 26 1.4 VVER technology understanding related to this study ...................................................................... 27 1.5 Thesis objectives ................................................................................................................................ 29 1.5.1 Studied object .............................................................................................................................. 30 1.5.2 Scope of study ............................................................................................................................. 30 1.6 Thesis outline ..................................................................................................................................... 31 Chapter 2. Overview of phase change models in code theories with different scales ........................... 33 2.1 Multi code and multi scales approach to PWR thermal hydraulic simulation ................................... 33 2.1.1 Neutron codes and thermal hydraulics codes .............................................................................. 33 2.1.2 Different scale of thermal hydraulic codes .................................................................................. 34 2.1.3 Different thermal hydraulic modeling approaches ...................................................................... 36 2.2 Phase change models in system code RELAP5 ................................................................................. 38 2.3 Phase change models in sub channel code CTF ................................................................................. 40 2.3.1 Evaporation and condensation induced by thermal phase change .............................................. 40 2.3.2 Evaporation and condensation induced by turbulent mixing and void drift................................ 42 2.4 Phase change models in meso scale code CFX .................................................................................. 42 2.4.1 Evaporation at the wall ................................................................................................................ 42 2.4.2 Condensation model in bulk of liquid ......................................................................................... 43 2.5 Conclusions ........................................................................................................................................ 44 Chapter 3. Phase change models verification and assessment by numerical simulation ..................... 45 3.1 Brief information of VVER-1000/V392 ............................................................................................ 45 3.2 Verification of RELAP5 simulation models for VVER-1000/V392 reactor with SAR ..................... 47 3.2.1 Nodalization scheme ................................................................................................................... 48 3.2.2 Verification of modeling through steady-state study .................................................................. 48 3.2.3 Verification through accident case study .................................................................................... 49 7 3.3 CTF models verification and assessment with BM ENTEK tests ...................................................... 51 3.3.1 ENTEK BM facility .................................................................................................................... 51 3.3.2 Modeling by CTF ........................................................................................................................ 53 3.3.3 Results and discussions ............................................................................................................... 53 3.4 Verification CFX models with PSBT sub channel tests ..................................................................... 59 3.4.1 PSBT test section for single sub channel .................................................................................... 60 3.4.2 Mesh generation study ................................................................................................................ 61 3.4.3 Solver convergence study ............................................................................................................ 63 3.4.4 Mesh refinement study ................................................................................................................ 64 3.4.5 Sensitivity study on physical models .......................................................................................... 68 3.4.6 Assessment of CFX and CTF modeling results in comparison with PSBT single channel ........ 79 3.4.7 Discussion on CTF and CFX void fraction predictions .............................................................. 82 3.4.8 Improvement of CFX void fraction prediction in saturated region ............................................. 84 3.5 Conclusions ........................................................................................................................................ 86 Chapter 4. Void fraction prediction in hot channel of VVER-1000/V392 ............................................ 88 4.1 Calculation Diagram .......................................................................................................................... 88 4.2 Power distribution calculation by MCNP5 code ................................................................................ 90 4.3 LOCAs simulation by RELAP5 code ................................................................................................ 93 4.4 Void fraction prediction in hot channel during transient by CTF code .............................................. 96 4.4.1 VVER-1000/V392 void fraction prediction by CTF ................................................................... 96 4.4.2 Discussion on RELAP5 and CTF void fraction predictions ....................................................... 98 4.5 Void fraction prediction in single channel by CFX code ................................................................. 100 4.5.1 Mesh refinement study .............................................................................................................. 101 4.5.2 Void fraction prediction calculated by CFX along sub channel ................................................ 102 4.6 Void fraction prediction in bundle of channel calculated by CFX code .......................................... 104 4.7 Conclusions ...................................................................................................................................... 107 Conclusions and proposals ...................................................................................................................... 108 Achievements and new findings given by the thesis .............................................................................. 108 Proposal of future work .......................................................................................................................... 110 References ................................................................................................................................................. 112 List of Author’ papers and report .......................................................................................................... 116 8 Abbreviations and Nomenclature Abbreviations VVER A Type of Pressurized Water Reactor developed by Russia VVER-1200/V491 A type of Russia reactor with capability of 1200 MWe VVER-1000/V392 A type of Russia reactor with capability of 1000 MWe VINATOM Vietnam Atomic Energy Institute TSO Technical Support Organization DID Defend in depth policy in nuclear power plant design PWR Pressurized Water Reactor SAR Safety Analysis Report of nuclear power plant NRA Nuclear Regulatory Authority RIAs Reactivity insertion accident LOFAs Loss of coolant flow LOCAs Loss of coolant accident DNB Departure of nucleate boiling DNBR Departure of nucleate boiling ratio Castellana The 4 x 4 square rod bundle test for fuel rod in Columbia University (USA) EPRI Electric Power Research Institute BM ENTEK The BM Facility at the Research and Development Institute of Power Engineering (RDIPE; a.k.a., ENTEK and NIKIET) models the forced circulation circuit of RBMK type reactors RBMK-1000 A type of Russia reactor of 1000 MWe with transliteration of Russian characters for graphite-moderated boiling-water-cooled channel-type reactor PSBT OECD/NRC Benchmark based on Nuclear Power Engineering Corporation (NUPEC, Japan) PWR sub channel and bundle tests CTF A version of COBRA-TF improved by Pennsylvania State University (USA) RELAP5 System code developed by Information Systems Laboratories, Inc. Rockville, Maryland Idaho Falls, Idaho COBRA-TF Coolant-Boiling in Rod Arrays—Two Fluids (COBRA-TF) is a Thermal Hydraulic (T/H) simulation code designed for Light Water Reactor (LWR) vessel analysis developed by Pacific Northwest Laboratory RELAP-3D Newest version of RELAP5 with coupling with COBRA-TF MARS-3D Newest version of MARS with coupling with COBRA-TF Belene A site for nuclear power plant project in Bulgaria Ansys CFX A Computational Fluid Dynamics developed by Ansys CFX Same as Ansys CFX PARCS A code for neutron kinetic calculation ITT interface tracking technique 0D, 1D, 2D Dimension of spatial averaging CHF Critical Heat Flux TH Thermal hydraulics RANS Reynolds-averaged Navier–Stokes Simulation 9 LES Large Eddy Simulation MSLB Main steam line break PTS Pressurize Thermal shock CFD Computational Fluid Dynamics DI Deterministic Interface FI Filtered Interface SI Statistical Interface U-RANS Unsteady flow T-RANS Transient flow meso scale The spatial scale with size around 1mm and less simulated with RANS ECCS system Emergency Core Cooling System LBLOCAs Large break for loss of coolant accident SBO Station black out SG Steam Generator SG PHRS Passive Heat Removal through Steam Generator HA-2 Secondary stage of Hydro accumulators HA-1 First stage of Hydro accumulators PCT Peaking temperature of cladding DBA Design Base Accident MCPL Main Coolant Pipe line LOOP Loss of offsite power DG Diesel Generator SAR SG SG Active Heat Removal System OECD/NRC BFBT UPEC BWR Full-size Fine-mesh Bundle Test (BFBT) Benchmark αcrit Void fraction corresponding with critical heat flux correlation 10 Nomenclature Sub-cooled vapor interfacial area per unit volume (m -1 ) Super-heated liquid interfacial area per unit volume (m -1 ) Super-heated vapor interfacial area per unit volume (m -1 ) As Conductor surface area in mesh cell (m 2 ) Ax Mesh-cell area, X normal (m 2 ) Cpl Liquid specific heat, constant pressure (J/kg.K) Cpv Vapor ... lizing multi code and multi scale including MCNP5, RELAP5, CTF and CFX for analysis of void fraction behavior in the core during transient. For system analysis by RELAP5 code for VVER-1000/V392, it is found that temperature near heated wall is not defined with enough accuracy due to large equivalent diameter if simulation a whole of fuel assembly, so the phase change models in RELAP5 do not give appropriate value of void fraction. From verification and validation of CTF results with ENTEK BM experiment, it is observed that CTF tends to give under prediction of void in the region of sub cooled boiling and flow regime in small bubble (αg < 0.2) and CTF tends to give over prediction of void in nucleate boiling region, corresponding with small-to-large bubble in flow regime. From verification with PSBT single sub channel experiment, CFX with model setup proposed in this thesis is converged with RMS of 1e-6 and stabilized in term of average void fraction prediction with physical sensitivity study. For the sub cooled boiling region corresponding with small bubble of flow regime (αg < 0.2), CFX gives the appropriate void fraction prediction with accuracy around ±0.03 of void. In saturated boiling region, the wall boiling model built in CFX is incorrectly partitioned heat flux to corresponding parts in convective, quenching and evaporative. This issue causes CFX gives under prediction of void fraction in saturated boiling region. It is proposed a calibration for bubble departure diameter and maximum area fraction to improve void fraction prediction by CFX in saturated region. It is established a procedure of utilizing CTF and CFX codes for void fraction prediction as following: (a) at sub cooled region, corresponding with small bubble flow regime, CFX results is used; (b) in saturated boiling region, CTF and CFX void fraction curves along the channel is used as upper and lower bound to predict void fraction in the core. Proposal of future work Utilization of CFD codes for investigation of void fraction in the core is still a challenge. This comes from complexity of boiling phenomena and the lack of experiment with similar PWR condition to verification and validation CFD models. Based on study in the thesis, several following issues are proposed to study. Study on modification of RPI wall boiling model built in CFX (and FLUENT) in saturated boiling region. Due to the fact that, in saturated boiling model, liquid 111 temperature is the same saturated one everywhere, even near wall, so that only evaporation and quenching phenomena can occur. Implement more experiment in similar PWR conditions which provides with void fraction distribution that can be used to validate evaporation and condensation models in CFX Study on more accuracy of void fraction prediction of CFX based on focusing on condensation such as the correlation of Nusselt number in different boiling conditions. 112 References [1] A. Rubin et al. (2010) OECD/NRC Benchmark Based on NUPEC PWR Sub channel and Bundle Tests (PSBT), Volume I: Experimental Database and Final Problem Specifications. US NRC/ OECD Nuclear Energy Agency, November 2010, pp. 12-22. [2] André Bakker (2006) Lecture 11 – Boundary Layers and Separation, Applied Computational Fluid Dynamics. Lecture in Dartmouth College from 2002-2006. [3] ANSYS, Inc (2011) ANSYS CFX-Solver Modeling Guide. Release 14.0, November 2011. [4] Boštjan Koncar, Borut Mavko (2002) Modeling of low-pressure sub cooled flow boiling using the RELAP5 code. Nuclear Engineering and Design 220 (2003) 255–273. [5] Boyan Ivanov, Kostadin Ivanov, Pavlin Groudev, Malinka Pavlova, Vasil Hadjiev, NEA/NSC/DOC (2002) VVER-1000 Coolant Transient Benchmark. PHASE 1 (V1000CT-1) Vol. I: Main Coolant Pump (MCP) switching On - Final Specifications. NUCLEAR ENERGY AGENCYORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT, 2002, pp. 87-88. [6] Brian L. Smith (2010) Assessment of CFD codes used in nuclear reactor safety simulations. Nuclear Engineering and Technology, Vol.42 No.4, pp.339 - 364, August 2010. [7] Bub Dong Chung, Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute (2009) Introduction of System T/H Safety Analysis Code. VAEI Training Course on Fundamental Safety Analysis and Computer Code with Basic T/H Knowledge Requirements, October 12-16, 2009, Hanoi, Vietnam. [8] C.Baudry, M.Guingo, A.Douce, J.Lavi´eville, S. Mimouni, and M. Boucker (2012) Numerical Study of the Steady-State Sub channel Test-Case with NEPTUNE CFD for the OECD/NRC NUPEC PSBT Benchmark. Science and Technology of Nuclear Installations, Volume 2012, Article ID 524598. Accepted 27 July 2012. [9] Dominique Bestion (2008) System Code Models and Capabilities. THICKET 2008 – Session III – Paper 06. [10] Dominique Bestion (2010) Extension of CFD codes application to two-phase flow safety problems. Nuclear Engineering and Technology, Vol.42 No.4, pp. 365-376, August 2010. [11] Dominique Bestion (2011) Status and Perspective for a multi scale approach to Light Water Reactor thermal hydraulic simulation. The 14th International Topical Meeting on Nuclear Reactor Thermal hydraulics, NURETH-14 Toronto, Ontario, Canada, September 25- 30, 2011. [12] E. Krepper, R. Rzehak (2011) CFD ANALYSIS OF A VOID DISTRIBUTION BENCHMARK OF THE NUPEC PSBT TESTS. Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH ’14) , Hilton Toronto Hotel, Toronto, Ontario, Canada, September 25-29, 2011. 113 [13] Eckhard Krepper , Roland Rzehak (2011) CFD for sub cooled flow boiling: Simulation of DEBORA experiments. Nuclear Engineering and Design 241 (2011) 3851– 3866. [14] Eckhard Krepper, Bostjan Koncar, Yury Egorov (2006) CFD modeling of sub cooled boiling—Concept, validation and application to fuel assembly design. Nuclear Engineering and Design 237 (2007) 716–731 [15] Expert Group on Reactor - based Plutonium Disposition, Eugeny Gomin, Mikhail Kalugin, Dmitry Oleynik Russian Research Centre, Kurchatov Institute (2006) VVER-1000 MOX core Computational Benchmark, Specification and Results. OECD 2006, NEA No 6088. [16] G. Rabello dos Anjos, Jacopo Buongiorno (2013) Bubble Condensation Heat Transfer in Subcooled Flow Boiling at PWR Conditions: a Critical Evaluation of Current Correlations. Massachusetts Institute of Technology Cambridge, MA, USA September 2013, pp. 8-11. [17] H. Anglart, O. Nylund, N. Kurul, and M. Z. Podowski (1997) CFD prediction of flow and phase distribution in fuel assemblies with spacers. Proceedings of the NURETH-7, Saratoga Springs, New York, 1995, published in: Nuclear Eng. & Design (NED), Vol. 177, pp. 215-228, 1997. [18] Information Systems Laboratories, Inc., Rockville, Maryland, Idaho Falls, Idaho (2001) RELAP5/MOD3.3 Code Manual, Vol. II, Appendix A Input Requirements. December 2001, pp. 12, 234. [19] Information Systems Laboratories, Inc., Rockville, Maryland, Idaho Falls, Idaho (2001) RELAP5/MOD3.3 Code Manual, Vol. I Code structure, System models, and Solution methods. December 2001, pp. 16-20, 20-24, 95. [20] Information Systems Laboratories, Inc., Rockville, Maryland, Idaho Falls, Idaho (2001) RELAP5/MOD3.3 Code Manual, Vol. IV Models and Correlations. December 2001, pp. 39- 105, 211-213. [21] International Atomic Energy Agency (2003) Accident analysis for Nuclear Power Plants with Pressurized Water Reactors. Safety Reports Series No. 30, Vienna 2003, pp. 8-11. [22] International Atomic Energy Agency (2008) Best estimate safety analysis for nuclear power plants: uncertainty evaluation. Safety Reports Series No. 52, Vienna 2008, pp. 1-2. [23] J. Michael Doster (2013) Assessment of the Performance of COBRA-TF for the Prediction of Sub cooled Boiling Conditions in Rod Bundles. CASL-U-2013-0201-000, September 30, 2013, p. 24. [24] J. Weis, A. Papukchiev, M. Scheuerer (2011) CFD Analysis of boiling flow in PWR sub channel geometry of the OECD/NRC PSBT benchmark Exercise I-1. Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH ’14), Hilton Toronto Hotel, Toronto, Ontario, Canada, September 25-29, 2011. [25] James J. Duderstadt, Louis J. Hamilton (1976) Nuclear Reactor Analysis. Department of Nuclear Engineering, University of Michigan, John Wiley & Son, 1976, pp. 491-498. 114 [26] M. Avramova, A. Velazquez-Lozada, and A. Rubin (2012) Comparative Analysis of CTF and Trace Thermal-Hydraulic Codes Using OECD/NRC PSBT Benchmark Void Distribution Database. Hindawi Publishing Corporation, Science and Technology of Nuclear Installations, Volume 2013, Article ID 725687. Accepted 16 November 2012, pp. 2-5. [27] M. J. Thurgood, J. M. Kelly, T. E. Guidotti, R. J. Kohrt, K. R. Crowell (1983) COBRA/TRAC - A Thermal-Hydraulics Code for Transient Analysis of Nuclear Reactor Vessels and Primary Coolant Systems, Equations and Constitutive Models. NUREG/CR- 3046, PNL-4385, Vol. 1, March 1983, pp. 3.15-3.22, 4.16-4.18. [28] M.Gluck (2008) Validation of the sub-channel code F-COBRA-TF, Part II Recalculation of void measurements. Nuclear Engineering and Design 238 (2008) 2317–2327. [29] Murray Cameron Thames (2014) Application and Assessment of a 9-equation Sub channel Methodology to Rod Bundles. A thesis in Nuclear Engineering for the Degree of Master of Science, North Carolina State University, 2014, pp. 7-10, 44, 55. [30] N. Kurul and M. Z. Podowski (1991) On the modeling of multi-dimensional effects in boiling channels. Proceedings of the 27th National heat transfer Conference, Minneapolis, July 1991. [31] Neil E. Todreas, Mujid S. Kazimi (2001) NUCLEAR SYSTEMS II Elements of Thermal Hydraulic Design. Massachusetts Institute of Technology, Taylor and Francis 2001, pp. 211- 212. [32] Nikolay Fil (2011) Design, Safety Technology and Operability Features of Advanced VVERs. Technical Cooperation Project INT/4/142 Interregional Workshop on Advanced Nuclear Reactor Technology for Near Term Deployment, IAEA Headquarters, Vienna, Austria, 4 – 8 July 2011. [33] P. L. Garner (2002) RELAP5/MOD3.2 Analysis of INSC Standard Problem INSCSP-R7: Void Fraction Distribution over RBMK Fuel Channel Height for Experiments Performed in the ENTEK BM Test Facility. United States International Nuclear Safety Center, Reactor Analysis and Engineering Division, Argonne National Laboratory, April 2002, pp. 6-9 [34] Risk Engineering LTD (2012) INTRODUCTION IN VVER TECHNOLOGIES. Training course provided for Vietnam Atomic Energy Institute VINATOM”, 15 Jan – 9 March 2012, Sofia, Bulgaria. [35] Risk Engineering LTD, Sofia 1618, Bulgaria 10, Vihren Str. (2012) Nuclear Power Technology Consideration. Project Science and Engineering Document (Reference Number REL-885-SG 6.9.3), December 2012, pp. 9-29. [36] Risk Engineering LTD, Sofia 1618, Bulgaria 10, Vihren Str.(2012) Nuclear Power Technology Consideration. Project Science and Engineering Document (Reference Number REL-885-SG 5.1), December 2012, pp. 12-13. [37] RISKAUDIT, GRS, IRSN (2010) Safety assessment of the Belene Npp. Bulgarian Nuclear Energy – National, Regional and World Energy Safety 9th -11th June 2010, Riviera complex, Varna. 115 [38] Robert K. Salko (2012) Improvement of COBRA-TF for modeling of PWR cold- and hot- legs during reactor transients. A dissertation in Nuclear Engineering for the Degree of Doctor of Philosophy, The Pennsylvania State University, May 2012, pp. 7-17, 13. [39] Roland Rzehak and Eckhard Krepper (2012) CFD for Sub cooled Flow Boiling: Parametric Variations. Hindawi Publishing Corporation, Science and Technology of Nuclear Installation, Accepted 22 October 2012. [40] S. G. Beus (1970) A two-phase turbulent mixing model for flow in rod bundles. Tech. Rep. WAPD-T-2438, Bettis Atomic Power Laboratory, 1970. [41] S.C.P. Cheung, S. Vahaji , G.H. Yeoh , J.Y. Tu (2014) Modeling sub cooled flow boiling in vertical channels at low pressures – Part 1: Assessment of empirical correlations. Article in press, International Journal of Heat and Mass Transfer xxx (2014) xxx–xxx [42] S.C.P. Cheung, S. Vahaji , G.H. Yeoh , J.Y. Tu, (2014) Modeling sub cooled flow boiling in vertical channels at low pressures – Part 2: Evaluation of mechanistic approach. Article in press, International Journal of Heat and Mass Transfer xxx (2014) xxx–xxx [43] Th. Frank, F. Reiterer and C. Lifante (2011) Investigation of the PWR Sub channel Void Distribution Benchmark (OECD/NRC PSBT benchmark) using Ansys CFX. Proceedings of the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH ’14) , Hilton Toronto Hotel, Toronto, Ontario, Canada, September 25-29, 2011. [44] Vinay Karanam (2011) Evaluation of sub-channel flow mixing coefficient for typical PWR fuel bundles having spacers using CFD analysis. A master thesis at Homi Bhabha National Institute, 2011. Pp 17-19. [45] Won-Pil Baek (2009) Overview of PWR Safety Analysis. Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute. VAEI Training Course on Fundamental Safety Analysis and Computer Code with Basic T/H Knowledge Requirements, October 12-16, 2009, Hanoi, Vietnam. [46] World Nuclear Association, “” 116 List of Author’ papers and report [1] Hoang Minh Giang, Nguyen Phu Khanh, Le Van Hong., (2014) “Capability analysis of passive systems in typical design extension conditions for nuclear reactor VVER-1000/V392”, Journal of Science and Technology 52 (2C) (2014) pp. 81-92. [2] Hoang Minh Giang, Nguyen Phu Khanh, Le Van Hong, Le Dai Dien.,(2014) “Study on improvement of convergence for PWR sub channel void distribution benchmark”, Journal of Science and Technology 52 (2C) (2014) pp. 184-197. [3] Hoang Minh Giang, Nguyen Phu Khanh., (2014) “Numerical investigation of departure bubble diameter for wall boiling model in PWR sub channel”, proceeding in AUN/SEED-Net Regional Conference on Mechanical and Manufacturing Engineering, 9-10 October, 2014 (RCMME-2014). [4] Hoang Minh Giang, Hoang Tan Hung, Nguyen Phu Khanh., (2015)“Investigation of CTF void fraction prediction by ENTEK BM experiment data”, Nuclear Science and Technology (ISSN 1810- 5408),Vol5, No1, 2015 pp.8 -17 [5] Hoang Minh Giang, Hoang Tan Hung, Nguyen Huu Tiep., (2015) “Multi codes and multi-scale analysis for void fraction prediction in hot channel for VVER-1000/V392”, Nuclear Science and Technology (ISSN 1810-5408), Vol5, No3, 2015 pp.19-31. [6] Hoang Minh Giang, Hoang Tan Hung, Nguyen Phu Khanh., (2015) “Numerical study on CTF code to predict void fraction in PWR sub channel conditions”, Nuclear Science and Technology (ISSN 1810-5408),Vol5, No4, 2015 pp.30-38.
File đính kèm:
- luan_an_nghien_cuu_hien_tuong_chuyen_pha_trong_vung_hoat_lo.pdf
- HMG-BIA-LATS-V9-EN.pdf
- HMG-BIA-LATS-V9-VN.pdf
- HMG-TOMTAT-LATS-V9-EN.pdf
- HMG-TOMTAT-LATS-V9-VN.pdf
- 11-Thong-Tin-LATS-Viet-Mau-5-Final.pdf
- 11-Thong-Tin-LATS-EN-Mau-5-Final.pdf